1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "logic/connectives.ma".
17 inductive Or (A,B:Type) : Type ≝
21 interpretation "constructive or" 'or x y = (Or x y).
23 inductive And (A,B:Type) : Type ≝
24 | Conj : A → B → And A B.
26 interpretation "constructive and" 'and x y = (And x y).
28 inductive exT (A:Type) (P:A→Type) : Type ≝
29 ex_introT: ∀w:A. P w → exT A P.
31 inductive ex (A:Type) (P:A→Prop) : Type ≝
32 ex_intro: ∀w:A. P w → ex A P.
35 notation < "hvbox(Σ ident i opt (: ty) break . p)"
36 right associative with precedence 20
37 for @{ 'sigma ${default
38 @{\lambda ${ident i} : $ty. $p)}
39 @{\lambda ${ident i} . $p}}}.
42 interpretation "constructive exists" 'exists \eta.x = (ex ? x).
43 interpretation "constructive exists (Type)" 'exists \eta.x = (exT ? x).
45 alias id "False" = "cic:/matita/logic/connectives/False.ind#xpointer(1/1)".
46 definition Not ≝ λx:Type.x → False.
48 interpretation "constructive not" 'not x = (Not x).