1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
19 definition left_neutral ≝ λC:apartness.λop.λe:C. ∀x:C. op e x ≈ x.
20 definition right_neutral ≝ λC:apartness.λop. λe:C. ∀x:C. op x e ≈ x.
21 definition left_inverse ≝ λC:apartness.λop.λe:C.λinv:C→C. ∀x:C. op (inv x) x ≈ e.
22 definition right_inverse ≝ λC:apartness.λop.λe:C.λ inv: C→ C. ∀x:C. op x (inv x) ≈ e.
23 (* ALLOW DEFINITION WITH SOME METAS *)
25 definition distributive_left ≝
26 λA:apartness.λf:A→A→A.λg:A→A→A.
27 ∀x,y,z. f x (g y z) ≈ g (f x y) (f x z).
29 definition distributive_right ≝
30 λA:apartness.λf:A→A→A.λg:A→A→A.
31 ∀x,y,z. f (g x y) z ≈ g (f x z) (f y z).
33 record abelian_group : Type ≝
35 plus: carr → carr → carr;
38 plus_assoc_: associative ? plus (eq carr);
39 plus_comm_: commutative ? plus (eq carr);
40 zero_neutral_: left_neutral ? plus zero;
41 opp_inverse_: left_inverse ? plus zero opp;
42 plus_strong_ext: ∀z.strong_ext ? (plus z)
45 notation "0" with precedence 89 for @{ 'zero }.
47 interpretation "Abelian group zero" 'zero = (zero ?).
49 interpretation "Abelian group plus" 'plus a b = (plus ? a b).
51 interpretation "Abelian group opp" 'uminus a = (opp ? a).
54 λG:abelian_group.λa,b:G. a + -b.
56 interpretation "Abelian group minus" 'minus a b = (minus ? a b).
58 lemma plus_assoc: ∀G:abelian_group.∀x,y,z:G.x+(y+z)≈x+y+z ≝ plus_assoc_.
59 lemma plus_comm: ∀G:abelian_group.∀x,y:G.x+y≈y+x ≝ plus_comm_.
60 lemma zero_neutral: ∀G:abelian_group.∀x:G.0+x≈x ≝ zero_neutral_.
61 lemma opp_inverse: ∀G:abelian_group.∀x:G.-x+x≈0 ≝ opp_inverse_.
63 definition ext ≝ λA:apartness.λop:A→A. ∀x,y. x ≈ y → op x ≈ op y.
65 lemma strong_ext_to_ext: ∀A:apartness.∀op:A→A. strong_ext ? op → ext ? op.
66 intros 6 (A op SEop x y Exy); intro Axy; apply Exy; apply SEop; assumption;
69 lemma feq_plusl: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x+y ≈ x+z.
70 intros (G x y z Eyz); apply (strong_ext_to_ext ?? (plus_strong_ext ? x));
74 coercion cic:/matita/group/feq_plusl.con nocomposites.
76 lemma plus_strong_extr: ∀G:abelian_group.∀z:G.strong_ext ? (λx.x + z).
77 intros 5 (G z x y A); simplify in A;
78 lapply (plus_comm ? z x) as E1; lapply (plus_comm ? z y) as E2;
79 lapply (Ap≪ ? E1 A) as A1; lapply (Ap≫ ? E2 A1) as A2;
80 apply (plus_strong_ext ???? A2);
83 lemma plus_cancl_ap: ∀G:abelian_group.∀x,y,z:G.z+x # z + y → x # y.
84 intros; apply plus_strong_ext; assumption;
87 lemma plus_cancr_ap: ∀G:abelian_group.∀x,y,z:G.x+z # y+z → x # y.
88 intros; apply plus_strong_extr; assumption;
91 lemma feq_plusr: ∀G:abelian_group.∀x,y,z:G. y ≈ z → y+x ≈ z+x.
92 intros (G x y z Eyz); apply (strong_ext_to_ext ?? (plus_strong_extr ? x));
96 coercion cic:/matita/group/feq_plusr.con nocomposites.
98 (* generation of coercions to make *_rew[lr] easier *)
99 lemma feq_plusr_sym_: ∀G:abelian_group.∀x,y,z:G.z ≈ y → y+x ≈ z+x.
100 compose feq_plusr with eq_sym (H); apply H; assumption;
102 coercion cic:/matita/group/feq_plusr_sym_.con nocomposites.
103 lemma feq_plusl_sym_: ∀G:abelian_group.∀x,y,z:G.z ≈ y → x+y ≈ x+z.
104 compose feq_plusl with eq_sym (H); apply H; assumption;
106 coercion cic:/matita/group/feq_plusl_sym_.con nocomposites.
108 lemma fap_plusl: ∀G:abelian_group.∀x,y,z:G. y # z → x+y # x+z.
109 intros (G x y z Ayz); apply (plus_strong_ext ? (-x));
110 apply (Ap≪ ((-x + x) + y));
111 [1: apply plus_assoc;
112 |2: apply (Ap≫ ((-x +x) +z));
113 [1: apply plus_assoc;
114 |2: apply (Ap≪ (0 + y));
115 [1: apply (feq_plusr ???? (opp_inverse ??));
116 |2: apply (Ap≪ ? (zero_neutral ? y));
117 apply (Ap≫ (0 + z) (opp_inverse ??));
118 apply (Ap≫ ? (zero_neutral ??)); assumption;]]]
121 lemma fap_plusr: ∀G:abelian_group.∀x,y,z:G. y # z → y+x # z+x.
122 intros (G x y z Ayz); apply (plus_strong_extr ? (-x));
123 apply (Ap≪ (y + (x + -x)));
124 [1: apply (eq_sym ??? (plus_assoc ????));
125 |2: apply (Ap≫ (z + (x + -x)));
126 [1: apply (eq_sym ??? (plus_assoc ????));
127 |2: apply (Ap≪ (y + (-x+x)) (plus_comm ? x (-x)));
128 apply (Ap≪ (y + 0) (opp_inverse ??));
129 apply (Ap≪ (0 + y) (plus_comm ???));
130 apply (Ap≪ y (zero_neutral ??));
131 apply (Ap≫ (z + (-x+x)) (plus_comm ? x (-x)));
132 apply (Ap≫ (z + 0) (opp_inverse ??));
133 apply (Ap≫ (0 + z) (plus_comm ???));
134 apply (Ap≫ z (zero_neutral ??));
138 lemma applus: ∀E:abelian_group.∀x,a,y,b:E.x + a # y + b → x # y ∨ a # b.
139 intros; cases (ap_cotransitive ??? (y+a) a1); [left|right]
140 [apply (plus_cancr_ap ??? a)|apply (plus_cancl_ap ??? y)]
144 lemma plus_cancl: ∀G:abelian_group.∀y,z,x:G. x+y ≈ x+z → y ≈ z.
145 intros 6 (G y z x E Ayz); apply E; apply fap_plusl; assumption;
148 lemma plus_cancr: ∀G:abelian_group.∀y,z,x:G. y+x ≈ z+x → y ≈ z.
149 intros 6 (G y z x E Ayz); apply E; apply fap_plusr; assumption;
152 theorem eq_opp_plus_plus_opp_opp:
153 ∀G:abelian_group.∀x,y:G. -(x+y) ≈ -x + -y.
154 intros (G x y); apply (plus_cancr ??? (x+y));
155 apply (Eq≈ 0 (opp_inverse ??));
156 apply (Eq≈ (-x + -y + x + y)); [2: apply (eq_sym ??? (plus_assoc ????))]
157 apply (Eq≈ (-y + -x + x + y)); [2: repeat apply feq_plusr; apply plus_comm]
158 apply (Eq≈ (-y + (-x + x) + y)); [2: apply feq_plusr; apply plus_assoc;]
159 apply (Eq≈ (-y + 0 + y));
160 [2: apply feq_plusr; apply feq_plusl; apply eq_sym; apply opp_inverse]
161 apply (Eq≈ (-y + y));
162 [2: apply feq_plusr; apply eq_sym;
163 apply (Eq≈ (0+-y)); [apply plus_comm|apply zero_neutral]]
164 apply eq_sym; apply opp_inverse.
167 theorem eq_opp_opp_x_x: ∀G:abelian_group.∀x:G.--x ≈ x.
168 intros (G x); apply (plus_cancl ??? (-x));
169 apply (Eq≈ (--x + -x) (plus_comm ???));
170 apply (Eq≈ 0 (opp_inverse ??));
171 apply eq_sym; apply opp_inverse;
174 theorem eq_zero_opp_zero: ∀G:abelian_group.0 ≈ -0. [assumption]
175 intro G; apply (plus_cancr ??? 0);
176 apply (Eq≈ 0); [apply zero_neutral;]
177 apply eq_sym; apply opp_inverse;
180 lemma feq_oppr: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x ≈ -y → x ≈ -z.
181 intros (G x y z H1 H2); apply (plus_cancr ??? z);
182 apply (Eq≈ 0 ? (opp_inverse ??));
183 apply (Eq≈ (-y + z) H2);
184 apply (Eq≈ (-y + y) H1);
185 apply (Eq≈ 0 (opp_inverse ??));
189 lemma feq_oppl: ∀G:abelian_group.∀x,y,z:G. y ≈ z → -y ≈ x → -z ≈ x.
190 intros (G x y z H1 H2); apply eq_sym; apply (feq_oppr ??y);
191 [2:apply eq_sym] assumption;
194 lemma feq_opp: ∀G:abelian_group.∀x,y:G. x ≈ y → -x ≈ -y.
195 intros (G x y H); apply (feq_oppl ??y ? H); apply eq_reflexive;
198 coercion cic:/matita/group/feq_opp.con nocomposites.
200 lemma eq_opp_sym: ∀G:abelian_group.∀x,y:G. y ≈ x → -x ≈ -y.
201 compose feq_opp with eq_sym (H); apply H; assumption;
204 coercion cic:/matita/group/eq_opp_sym.con nocomposites.
206 lemma eq_opp_plusr: ∀G:abelian_group.∀x,y,z:G. x ≈ y → -(x + z) ≈ -(y + z).
207 compose feq_plusr with feq_opp(H); apply H; assumption;
210 coercion cic:/matita/group/eq_opp_plusr.con nocomposites.
212 lemma eq_opp_plusl: ∀G:abelian_group.∀x,y,z:G. x ≈ y → -(z + x) ≈ -(z + y).
213 compose feq_plusl with feq_opp(H); apply H; assumption;
216 coercion cic:/matita/group/eq_opp_plusl.con nocomposites.