1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was generated by xoa.native: do not edit *********************)
17 include "basics/pts.ma".
19 (* multiple existental quantifier (2, 1) *)
21 inductive ex2_1 (A0:Type[0]) (P0,P1:A0→Prop) : Prop ≝
22 | ex2_1_intro: ∀x0. P0 x0 → P1 x0 → ex2_1 ? ? ?
25 interpretation "multiple existental quantifier (2, 1)" 'Ex P0 P1 = (ex2_1 ? P0 P1).
27 (* multiple existental quantifier (3, 2) *)
29 inductive ex3_2 (A0,A1:Type[0]) (P0,P1,P2:A0→A1→Prop) : Prop ≝
30 | ex3_2_intro: ∀x0,x1. P0 x0 x1 → P1 x0 x1 → P2 x0 x1 → ex3_2 ? ? ? ? ?
33 interpretation "multiple existental quantifier (3, 2)" 'Ex P0 P1 P2 = (ex3_2 ? ? P0 P1 P2).
35 (* multiple existental quantifier (4, 3) *)
37 inductive ex4_3 (A0,A1,A2:Type[0]) (P0,P1,P2,P3:A0→A1→A2→Prop) : Prop ≝
38 | ex4_3_intro: ∀x0,x1,x2. P0 x0 x1 x2 → P1 x0 x1 x2 → P2 x0 x1 x2 → P3 x0 x1 x2 → ex4_3 ? ? ? ? ? ? ?
41 interpretation "multiple existental quantifier (4, 3)" 'Ex P0 P1 P2 P3 = (ex4_3 ? ? ? P0 P1 P2 P3).
43 (* multiple disjunction connective (3) *)
45 inductive or3 (P0,P1,P2:Prop) : Prop ≝
46 | or3_intro0: P0 → or3 ? ? ?
47 | or3_intro1: P1 → or3 ? ? ?
48 | or3_intro2: P2 → or3 ? ? ?
51 interpretation "multiple disjunction connective (3)" 'Or P0 P1 P2 = (or3 P0 P1 P2).