1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was generated by xoa.native: do not edit *********************)
17 (* multiple existental quantifier (2, 2) *)
19 notation > "hvbox(∃∃ ident x0 , ident x1 break . term 19 P0 break & term 19 P1)"
20 non associative with precedence 20
21 for @{ 'Ex (λ${ident x0}.λ${ident x1}.$P0) (λ${ident x0}.λ${ident x1}.$P1) }.
23 notation < "hvbox(∃∃ ident x0 , ident x1 break . term 19 P0 break & term 19 P1)"
24 non associative with precedence 20
25 for @{ 'Ex (λ${ident x0}:$T0.λ${ident x1}:$T1.$P0) (λ${ident x0}:$T0.λ${ident x1}:$T1.$P1) }.
27 (* multiple existental quantifier (3, 2) *)
29 notation > "hvbox(∃∃ ident x0 , ident x1 break . term 19 P0 break & term 19 P1 break & term 19 P2)"
30 non associative with precedence 20
31 for @{ 'Ex (λ${ident x0}.λ${ident x1}.$P0) (λ${ident x0}.λ${ident x1}.$P1) (λ${ident x0}.λ${ident x1}.$P2) }.
33 notation < "hvbox(∃∃ ident x0 , ident x1 break . term 19 P0 break & term 19 P1 break & term 19 P2)"
34 non associative with precedence 20
35 for @{ 'Ex (λ${ident x0}:$T0.λ${ident x1}:$T1.$P0) (λ${ident x0}:$T0.λ${ident x1}:$T1.$P1) (λ${ident x0}:$T0.λ${ident x1}:$T1.$P2) }.
37 (* multiple existental quantifier (3, 3) *)
39 notation > "hvbox(∃∃ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2)"
40 non associative with precedence 20
41 for @{ 'Ex (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P0) (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P1) (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P2) }.
43 notation < "hvbox(∃∃ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2)"
44 non associative with precedence 20
45 for @{ 'Ex (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P0) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P1) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P2) }.
47 (* multiple existental quantifier (4, 3) *)
49 notation > "hvbox(∃∃ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3)"
50 non associative with precedence 20
51 for @{ 'Ex (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P0) (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P1) (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P2) (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P3) }.
53 notation < "hvbox(∃∃ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3)"
54 non associative with precedence 20
55 for @{ 'Ex (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P0) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P1) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P2) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P3) }.
57 (* multiple disjunction connective (3) *)
59 notation "hvbox(∨∨ term 29 P0 break | term 29 P1 break | term 29 P2)"
60 non associative with precedence 30
61 for @{ 'Or $P0 $P1 $P2 }.