]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambda-delta/Basic-2/substitution/lift.ma
0a4e1715abe3d0e7468a7eee4bd59f38fabe60ed
[helm.git] / matita / matita / contribs / lambda-delta / Basic-2 / substitution / lift.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "Basic-2/grammar/term_weight.ma".
16
17 (* RELOCATION ***************************************************************)
18
19 inductive lift: term → nat → nat → term → Prop ≝
20 | lift_sort   : ∀k,d,e. lift (⋆k) d e (⋆k)
21 | lift_lref_lt: ∀i,d,e. i < d → lift (#i) d e (#i)
22 | lift_lref_ge: ∀i,d,e. d ≤ i → lift (#i) d e (#(i + e))
23 | lift_bind   : ∀I,V1,V2,T1,T2,d,e.
24                 lift V1 d e V2 → lift T1 (d + 1) e T2 →
25                 lift (𝕓{I} V1. T1) d e (𝕓{I} V2. T2)
26 | lift_flat   : ∀I,V1,V2,T1,T2,d,e.
27                 lift V1 d e V2 → lift T1 d e T2 →
28                 lift (𝕗{I} V1. T1) d e (𝕗{I} V2. T2)
29 .
30
31 interpretation "relocation" 'RLift T1 d e T2 = (lift T1 d e T2).
32
33 (* Basic properties *********************************************************)
34
35 lemma lift_lref_ge_minus: ∀d,e,i. d + e ≤ i → ↑[d, e] #(i - e) ≡ #i.
36 #d #e #i #H >(plus_minus_m_m i e) in ⊢ (? ? ? ? %) /3/
37 qed.
38
39 lemma lift_refl: ∀T,d. ↑[d, 0] T ≡ T.
40 #T elim T -T
41 [ * #i // #d elim (lt_or_ge i d) /2/
42 | * /2/
43 ]
44 qed.
45
46 lemma lift_total: ∀T1,d,e. ∃T2. ↑[d,e] T1 ≡ T2.
47 #T1 elim T1 -T1
48 [ * #i /2/ #d #e elim (lt_or_ge i d) /3/
49 | * #I #V1 #T1 #IHV1 #IHT1 #d #e
50   elim (IHV1 d e) -IHV1 #V2 #HV12
51   [ elim (IHT1 (d+1) e) -IHT1 /3/
52   | elim (IHT1 d e) -IHT1 /3/
53   ]
54 ]
55 qed.
56
57 lemma lift_split: ∀d1,e2,T1,T2. ↑[d1, e2] T1 ≡ T2 → ∀d2,e1.
58                                 d1 ≤ d2 → d2 ≤ d1 + e1 → e1 ≤ e2 →
59                                 ∃∃T. ↑[d1, e1] T1 ≡ T & ↑[d2, e2 - e1] T ≡ T2.
60 #d1 #e2 #T1 #T2 #H elim H -H d1 e2 T1 T2
61 [ /3/
62 | #i #d1 #e2 #Hid1 #d2 #e1 #Hd12 #_ #_
63   lapply (lt_to_le_to_lt … Hid1 Hd12) -Hd12 #Hid2 /4/
64 | #i #d1 #e2 #Hid1 #d2 #e1 #_ #Hd21 #He12
65   lapply (transitive_le …(i+e1) Hd21 ?) /2/ -Hd21 #Hd21
66   <(arith_d1 i e2 e1) // /3/
67 | #I #V1 #V2 #T1 #T2 #d1 #e2 #_ #_ #IHV #IHT #d2 #e1 #Hd12 #Hd21 #He12
68   elim (IHV … Hd12 Hd21 He12) -IHV #V0 #HV0a #HV0b
69   elim (IHT (d2+1) … ? ? He12) /3 width = 5/
70 | #I #V1 #V2 #T1 #T2 #d1 #e2 #_ #_ #IHV #IHT #d2 #e1 #Hd12 #Hd21 #He12
71   elim (IHV … Hd12 Hd21 He12) -IHV #V0 #HV0a #HV0b
72   elim (IHT d2 … ? ? He12) /3 width = 5/
73 ]
74 qed.
75
76 (* Basic forward lemmas *****************************************************)
77
78 lemma tw_lift: ∀d,e,T1,T2. ↑[d, e] T1 ≡ T2 → #[T1] = #[T2].
79 #d #e #T1 #T2 #H elim H -d e T1 T2; normalize //
80 qed.
81
82 (* Basic inversion lemmas ***************************************************)
83
84 fact lift_inv_refl_aux: ∀d,e,T1,T2. ↑[d, e] T1 ≡ T2 → e = 0 → T1 = T2.
85 #d #e #T1 #T2 #H elim H -H d e T1 T2 /3/
86 qed.
87
88 lemma lift_inv_refl: ∀d,T1,T2. ↑[d, 0] T1 ≡ T2 → T1 = T2.
89 /2/ qed.
90
91 fact lift_inv_sort1_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀k. T1 = ⋆k → T2 = ⋆k.
92 #d #e #T1 #T2 * -d e T1 T2 //
93 [ #i #d #e #_ #k #H destruct
94 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #k #H destruct
95 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #k #H destruct
96 ]
97 qed.
98
99 lemma lift_inv_sort1: ∀d,e,T2,k. ↑[d,e] ⋆k ≡ T2 → T2 = ⋆k.
100 /2 width=5/ qed.
101
102 fact lift_inv_lref1_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀i. T1 = #i →
103                          (i < d ∧ T2 = #i) ∨ (d ≤ i ∧ T2 = #(i + e)).
104 #d #e #T1 #T2 * -d e T1 T2
105 [ #k #d #e #i #H destruct
106 | #j #d #e #Hj #i #Hi destruct /3/
107 | #j #d #e #Hj #i #Hi destruct /3/
108 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #i #H destruct
109 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #i #H destruct
110 ]
111 qed.
112
113 lemma lift_inv_lref1: ∀d,e,T2,i. ↑[d,e] #i ≡ T2 →
114                       (i < d ∧ T2 = #i) ∨ (d ≤ i ∧ T2 = #(i + e)).
115 /2/ qed.
116
117 lemma lift_inv_lref1_lt: ∀d,e,T2,i. ↑[d,e] #i ≡ T2 → i < d → T2 = #i.
118 #d #e #T2 #i #H elim (lift_inv_lref1 … H) -H * //
119 #Hdi #_ #Hid lapply (le_to_lt_to_lt … Hdi Hid) -Hdi Hid #Hdd
120 elim (lt_refl_false … Hdd)
121 qed.
122
123 lemma lift_inv_lref1_ge: ∀d,e,T2,i. ↑[d,e] #i ≡ T2 → d ≤ i → T2 = #(i + e).
124 #d #e #T2 #i #H elim (lift_inv_lref1 … H) -H * //
125 #Hid #_ #Hdi lapply (le_to_lt_to_lt … Hdi Hid) -Hdi Hid #Hdd
126 elim (lt_refl_false … Hdd)
127 qed.
128
129 fact lift_inv_bind1_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 →
130                          ∀I,V1,U1. T1 = 𝕓{I} V1.U1 →
131                          ∃∃V2,U2. ↑[d,e] V1 ≡ V2 & ↑[d+1,e] U1 ≡ U2 &
132                                   T2 = 𝕓{I} V2. U2.
133 #d #e #T1 #T2 * -d e T1 T2
134 [ #k #d #e #I #V1 #U1 #H destruct
135 | #i #d #e #_ #I #V1 #U1 #H destruct
136 | #i #d #e #_ #I #V1 #U1 #H destruct
137 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V1 #U1 #H destruct /2 width=5/
138 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V1 #U1 #H destruct
139 ]
140 qed.
141
142 lemma lift_inv_bind1: ∀d,e,T2,I,V1,U1. ↑[d,e] 𝕓{I} V1. U1 ≡ T2 →
143                       ∃∃V2,U2. ↑[d,e] V1 ≡ V2 & ↑[d+1,e] U1 ≡ U2 &
144                                T2 = 𝕓{I} V2. U2.
145 /2/ qed.
146
147 fact lift_inv_flat1_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 →
148                          ∀I,V1,U1. T1 = 𝕗{I} V1.U1 →
149                          ∃∃V2,U2. ↑[d,e] V1 ≡ V2 & ↑[d,e] U1 ≡ U2 &
150                                   T2 = 𝕗{I} V2. U2.
151 #d #e #T1 #T2 * -d e T1 T2
152 [ #k #d #e #I #V1 #U1 #H destruct
153 | #i #d #e #_ #I #V1 #U1 #H destruct
154 | #i #d #e #_ #I #V1 #U1 #H destruct
155 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V1 #U1 #H destruct
156 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V1 #U1 #H destruct /2 width=5/
157 ]
158 qed.
159
160 lemma lift_inv_flat1: ∀d,e,T2,I,V1,U1. ↑[d,e] 𝕗{I} V1. U1 ≡ T2 →
161                       ∃∃V2,U2. ↑[d,e] V1 ≡ V2 & ↑[d,e] U1 ≡ U2 &
162                                T2 = 𝕗{I} V2. U2.
163 /2/ qed.
164
165 fact lift_inv_sort2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀k. T2 = ⋆k → T1 = ⋆k.
166 #d #e #T1 #T2 * -d e T1 T2 //
167 [ #i #d #e #_ #k #H destruct
168 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #k #H destruct
169 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #k #H destruct
170 ]
171 qed.
172
173 lemma lift_inv_sort2: ∀d,e,T1,k. ↑[d,e] T1 ≡ ⋆k → T1 = ⋆k.
174 /2 width=5/ qed.
175
176 fact lift_inv_lref2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀i. T2 = #i →
177                          (i < d ∧ T1 = #i) ∨ (d + e ≤ i ∧ T1 = #(i - e)).
178 #d #e #T1 #T2 * -d e T1 T2
179 [ #k #d #e #i #H destruct
180 | #j #d #e #Hj #i #Hi destruct /3/
181 | #j #d #e #Hj #i #Hi destruct <minus_plus_m_m /4/
182 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #i #H destruct
183 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #i #H destruct
184 ]
185 qed.
186
187 lemma lift_inv_lref2: ∀d,e,T1,i. ↑[d,e] T1 ≡ #i →
188                       (i < d ∧ T1 = #i) ∨ (d + e ≤ i ∧ T1 = #(i - e)).
189 /2/ qed.
190
191 lemma lift_inv_lref2_lt: ∀d,e,T1,i. ↑[d,e] T1 ≡ #i → i < d → T1 = #i.
192 #d #e #T1 #i #H elim (lift_inv_lref2 … H) -H * //
193 #Hdi #_ #Hid lapply (le_to_lt_to_lt … Hdi Hid) -Hdi Hid #Hdd
194 elim (plus_lt_false … Hdd)
195 qed.
196
197 lemma lift_inv_lref2_ge: ∀d,e,T1,i. ↑[d,e] T1 ≡ #i → d + e ≤ i → T1 = #(i - e).
198 #d #e #T1 #i #H elim (lift_inv_lref2 … H) -H * //
199 #Hid #_ #Hdi lapply (le_to_lt_to_lt … Hdi Hid) -Hdi Hid #Hdd
200 elim (plus_lt_false … Hdd)
201 qed.
202
203 fact lift_inv_bind2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 →
204                          ∀I,V2,U2. T2 = 𝕓{I} V2.U2 →
205                          ∃∃V1,U1. ↑[d,e] V1 ≡ V2 & ↑[d+1,e] U1 ≡ U2 &
206                                   T1 = 𝕓{I} V1. U1.
207 #d #e #T1 #T2 * -d e T1 T2
208 [ #k #d #e #I #V2 #U2 #H destruct
209 | #i #d #e #_ #I #V2 #U2 #H destruct
210 | #i #d #e #_ #I #V2 #U2 #H destruct
211 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V2 #U2 #H destruct /2 width=5/
212 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V2 #U2 #H destruct
213 ]
214 qed.
215
216 lemma lift_inv_bind2: ∀d,e,T1,I,V2,U2. ↑[d,e] T1 ≡  𝕓{I} V2. U2 →
217                       ∃∃V1,U1. ↑[d,e] V1 ≡ V2 & ↑[d+1,e] U1 ≡ U2 &
218                                T1 = 𝕓{I} V1. U1.
219 /2/ qed.
220
221 fact lift_inv_flat2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 →
222                          ∀I,V2,U2. T2 = 𝕗{I} V2.U2 →
223                          ∃∃V1,U1. ↑[d,e] V1 ≡ V2 & ↑[d,e] U1 ≡ U2 &
224                                   T1 = 𝕗{I} V1. U1.
225 #d #e #T1 #T2 * -d e T1 T2
226 [ #k #d #e #I #V2 #U2 #H destruct
227 | #i #d #e #_ #I #V2 #U2 #H destruct
228 | #i #d #e #_ #I #V2 #U2 #H destruct
229 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V2 #U2 #H destruct
230 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V2 #U2 #H destruct /2 width = 5/
231 ]
232 qed.
233
234 lemma lift_inv_flat2: ∀d,e,T1,I,V2,U2. ↑[d,e] T1 ≡  𝕗{I} V2. U2 →
235                       ∃∃V1,U1. ↑[d,e] V1 ≡ V2 & ↑[d,e] U1 ≡ U2 &
236                                T1 = 𝕗{I} V1. U1.
237 /2/ qed.