]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambda-delta/Basic-2/substitution/lift.ma
a5b15e1100d74da3278a51f706b50aa1bc729554
[helm.git] / matita / matita / contribs / lambda-delta / Basic-2 / substitution / lift.ma
1 (*
2     ||M||  This file is part of HELM, an Hypertextual, Electronic
3     ||A||  Library of Mathematics, developed at the Computer Science
4     ||T||  Department of the University of Bologna, Italy.
5     ||I||
6     ||T||
7     ||A||  This file is distributed under the terms of the
8     \   /  GNU General Public License Version 2
9      \ /
10       V_______________________________________________________________ *)
11
12 include "lambda-delta/syntax/term.ma".
13
14 (* RELOCATION ***************************************************************)
15
16 inductive lift: term → nat → nat → term → Prop ≝
17 | lift_sort   : ∀k,d,e. lift (⋆k) d e (⋆k)
18 | lift_lref_lt: ∀i,d,e. i < d → lift (#i) d e (#i)
19 | lift_lref_ge: ∀i,d,e. d ≤ i → lift (#i) d e (#(i + e))
20 | lift_bind   : ∀I,V1,V2,T1,T2,d,e.
21                 lift V1 d e V2 → lift T1 (d + 1) e T2 →
22                 lift (𝕓{I} V1. T1) d e (𝕓{I} V2. T2)
23 | lift_flat   : ∀I,V1,V2,T1,T2,d,e.
24                 lift V1 d e V2 → lift T1 d e T2 →
25                 lift (𝕗{I} V1. T1) d e (𝕗{I} V2. T2)
26 .
27
28 interpretation "relocation" 'RLift T1 d e T2 = (lift T1 d e T2).
29
30 (* Basic properties *********************************************************)
31
32 lemma lift_lref_ge_minus: ∀d,e,i. d + e ≤ i → ↑[d, e] #(i - e) ≡ #i.
33 #d #e #i #H >(plus_minus_m_m i e) in ⊢ (? ? ? ? %) /3/
34 qed.
35
36 lemma lift_refl: ∀T,d. ↑[d, 0] T ≡ T.
37 #T elim T -T
38 [ //
39 | #i #d elim (lt_or_ge i d) /2/
40 | #I elim I -I /2/
41 ]
42 qed.
43
44 lemma lift_total: ∀T1,d,e. ∃T2. ↑[d,e] T1 ≡ T2.
45 #T1 elim T1 -T1
46 [ /2/
47 | #i #d #e elim (lt_or_ge i d) /3/
48 | * #I #V1 #T1 #IHV1 #IHT1 #d #e
49   elim (IHV1 d e) -IHV1 #V2 #HV12
50   [ elim (IHT1 (d+1) e) -IHT1 /3/
51   | elim (IHT1 d e) -IHT1 /3/
52   ]
53 ]
54 qed.
55
56 lemma lift_split: ∀d1,e2,T1,T2. ↑[d1, e2] T1 ≡ T2 → ∀d2,e1.
57                                 d1 ≤ d2 → d2 ≤ d1 + e1 → e1 ≤ e2 →
58                                 ∃∃T. ↑[d1, e1] T1 ≡ T & ↑[d2, e2 - e1] T ≡ T2.
59 #d1 #e2 #T1 #T2 #H elim H -H d1 e2 T1 T2
60 [ /3/
61 | #i #d1 #e2 #Hid1 #d2 #e1 #Hd12 #_ #_
62   lapply (lt_to_le_to_lt … Hid1 Hd12) -Hd12 #Hid2 /4/
63 | #i #d1 #e2 #Hid1 #d2 #e1 #_ #Hd21 #He12
64   lapply (transitive_le …(i+e1) Hd21 ?) /2/ -Hd21 #Hd21
65   <(arith_d1 i e2 e1) // /3/
66 | #I #V1 #V2 #T1 #T2 #d1 #e2 #_ #_ #IHV #IHT #d2 #e1 #Hd12 #Hd21 #He12
67   elim (IHV … Hd12 Hd21 He12) -IHV #V0 #HV0a #HV0b
68   elim (IHT (d2+1) … ? ? He12) /3 width = 5/
69 | #I #V1 #V2 #T1 #T2 #d1 #e2 #_ #_ #IHV #IHT #d2 #e1 #Hd12 #Hd21 #He12
70   elim (IHV … Hd12 Hd21 He12) -IHV #V0 #HV0a #HV0b
71   elim (IHT d2 … ? ? He12) /3 width = 5/
72 ]
73 qed.
74
75 (* Basic inversion lemmas ***************************************************)
76
77 lemma lift_inv_refl_aux: ∀d,e,T1,T2. ↑[d, e] T1 ≡ T2 → e = 0 → T1 = T2.
78 #d #e #T1 #T2 #H elim H -H d e T1 T2 /3/
79 qed.
80
81 lemma lift_inv_refl: ∀d,T1,T2. ↑[d, 0] T1 ≡ T2 → T1 = T2.
82 /2/ qed.
83
84 lemma lift_inv_sort1_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀k. T1 = ⋆k → T2 = ⋆k.
85 #d #e #T1 #T2 * -d e T1 T2 //
86 [ #i #d #e #_ #k #H destruct
87 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #k #H destruct
88 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #k #H destruct
89 ]
90 qed.
91
92 lemma lift_inv_sort1: ∀d,e,T2,k. ↑[d,e] ⋆k ≡ T2 → T2 = ⋆k.
93 /2 width=5/ qed.
94
95 lemma lift_inv_lref1_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀i. T1 = #i →
96                           (i < d ∧ T2 = #i) ∨ (d ≤ i ∧ T2 = #(i + e)).
97 #d #e #T1 #T2 * -d e T1 T2
98 [ #k #d #e #i #H destruct
99 | #j #d #e #Hj #i #Hi destruct /3/
100 | #j #d #e #Hj #i #Hi destruct /3/
101 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #i #H destruct
102 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #i #H destruct
103 ]
104 qed.
105
106 lemma lift_inv_lref1: ∀d,e,T2,i. ↑[d,e] #i ≡ T2 →
107                       (i < d ∧ T2 = #i) ∨ (d ≤ i ∧ T2 = #(i + e)).
108 /2/ qed.
109
110 lemma lift_inv_lref1_lt: ∀d,e,T2,i. ↑[d,e] #i ≡ T2 → i < d → T2 = #i.
111 #d #e #T2 #i #H elim (lift_inv_lref1 … H) -H * //
112 #Hdi #_ #Hid lapply (le_to_lt_to_lt … Hdi Hid) -Hdi Hid #Hdd
113 elim (lt_refl_false … Hdd)
114 qed.
115
116 lemma lift_inv_lref1_ge: ∀d,e,T2,i. ↑[d,e] #i ≡ T2 → d ≤ i → T2 = #(i + e).
117 #d #e #T2 #i #H elim (lift_inv_lref1 … H) -H * //
118 #Hid #_ #Hdi lapply (le_to_lt_to_lt … Hdi Hid) -Hdi Hid #Hdd
119 elim (lt_refl_false … Hdd)
120 qed.
121
122 lemma lift_inv_bind1_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 →
123                           ∀I,V1,U1. T1 = 𝕓{I} V1.U1 →
124                           ∃∃V2,U2. ↑[d,e] V1 ≡ V2 & ↑[d+1,e] U1 ≡ U2 &
125                                    T2 = 𝕓{I} V2. U2.
126 #d #e #T1 #T2 * -d e T1 T2
127 [ #k #d #e #I #V1 #U1 #H destruct
128 | #i #d #e #_ #I #V1 #U1 #H destruct
129 | #i #d #e #_ #I #V1 #U1 #H destruct
130 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V1 #U1 #H destruct /2 width=5/
131 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V1 #U1 #H destruct
132 ]
133 qed.
134
135 lemma lift_inv_bind1: ∀d,e,T2,I,V1,U1. ↑[d,e] 𝕓{I} V1. U1 ≡ T2 →
136                       ∃∃V2,U2. ↑[d,e] V1 ≡ V2 & ↑[d+1,e] U1 ≡ U2 &
137                                T2 = 𝕓{I} V2. U2.
138 /2/ qed.
139
140 lemma lift_inv_flat1_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 →
141                           ∀I,V1,U1. T1 = 𝕗{I} V1.U1 →
142                           ∃∃V2,U2. ↑[d,e] V1 ≡ V2 & ↑[d,e] U1 ≡ U2 &
143                                    T2 = 𝕗{I} V2. U2.
144 #d #e #T1 #T2 * -d e T1 T2
145 [ #k #d #e #I #V1 #U1 #H destruct
146 | #i #d #e #_ #I #V1 #U1 #H destruct
147 | #i #d #e #_ #I #V1 #U1 #H destruct
148 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V1 #U1 #H destruct
149 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V1 #U1 #H destruct /2 width=5/
150 ]
151 qed.
152
153 lemma lift_inv_flat1: ∀d,e,T2,I,V1,U1. ↑[d,e] 𝕗{I} V1. U1 ≡ T2 →
154                       ∃∃V2,U2. ↑[d,e] V1 ≡ V2 & ↑[d,e] U1 ≡ U2 &
155                                T2 = 𝕗{I} V2. U2.
156 /2/ qed.
157
158 lemma lift_inv_sort2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀k. T2 = ⋆k → T1 = ⋆k.
159 #d #e #T1 #T2 * -d e T1 T2 //
160 [ #i #d #e #_ #k #H destruct
161 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #k #H destruct
162 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #k #H destruct
163 ]
164 qed.
165
166 lemma lift_inv_sort2: ∀d,e,T1,k. ↑[d,e] T1 ≡ ⋆k → T1 = ⋆k.
167 /2 width=5/ qed.
168
169 lemma lift_inv_lref2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀i. T2 = #i →
170                           (i < d ∧ T1 = #i) ∨ (d + e ≤ i ∧ T1 = #(i - e)).
171 #d #e #T1 #T2 * -d e T1 T2
172 [ #k #d #e #i #H destruct
173 | #j #d #e #Hj #i #Hi destruct /3/
174 | #j #d #e #Hj #i #Hi destruct <minus_plus_m_m /4/
175 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #i #H destruct
176 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #i #H destruct
177 ]
178 qed.
179
180 lemma lift_inv_lref2: ∀d,e,T1,i. ↑[d,e] T1 ≡ #i →
181                       (i < d ∧ T1 = #i) ∨ (d + e ≤ i ∧ T1 = #(i - e)).
182 /2/ qed.
183
184 lemma lift_inv_lref2_lt: ∀d,e,T1,i. ↑[d,e] T1 ≡ #i → i < d → T1 = #i.
185 #d #e #T1 #i #H elim (lift_inv_lref2 … H) -H * //
186 #Hdi #_ #Hid lapply (le_to_lt_to_lt … Hdi Hid) -Hdi Hid #Hdd
187 elim (plus_lt_false … Hdd)
188 qed.
189
190 lemma lift_inv_lref2_ge: ∀d,e,T1,i. ↑[d,e] T1 ≡ #i → d + e ≤ i → T1 = #(i - e).
191 #d #e #T1 #i #H elim (lift_inv_lref2 … H) -H * //
192 #Hid #_ #Hdi lapply (le_to_lt_to_lt … Hdi Hid) -Hdi Hid #Hdd
193 elim (plus_lt_false … Hdd)
194 qed.
195
196 lemma lift_inv_bind2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 →
197                           ∀I,V2,U2. T2 = 𝕓{I} V2.U2 →
198                           ∃∃V1,U1. ↑[d,e] V1 ≡ V2 & ↑[d+1,e] U1 ≡ U2 &
199                                    T1 = 𝕓{I} V1. U1.
200 #d #e #T1 #T2 * -d e T1 T2
201 [ #k #d #e #I #V2 #U2 #H destruct
202 | #i #d #e #_ #I #V2 #U2 #H destruct
203 | #i #d #e #_ #I #V2 #U2 #H destruct
204 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V2 #U2 #H destruct /2 width=5/
205 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V2 #U2 #H destruct
206 ]
207 qed.
208
209 lemma lift_inv_bind2: ∀d,e,T1,I,V2,U2. ↑[d,e] T1 ≡  𝕓{I} V2. U2 →
210                       ∃∃V1,U1. ↑[d,e] V1 ≡ V2 & ↑[d+1,e] U1 ≡ U2 &
211                                T1 = 𝕓{I} V1. U1.
212 /2/ qed.
213
214 lemma lift_inv_flat2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 →
215                           ∀I,V2,U2. T2 = 𝕗{I} V2.U2 →
216                           ∃∃V1,U1. ↑[d,e] V1 ≡ V2 & ↑[d,e] U1 ≡ U2 &
217                                    T1 = 𝕗{I} V1. U1.
218 #d #e #T1 #T2 * -d e T1 T2
219 [ #k #d #e #I #V2 #U2 #H destruct
220 | #i #d #e #_ #I #V2 #U2 #H destruct
221 | #i #d #e #_ #I #V2 #U2 #H destruct
222 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V2 #U2 #H destruct
223 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V2 #U2 #H destruct /2 width = 5/
224 ]
225 qed.
226
227 lemma lift_inv_flat2: ∀d,e,T1,I,V2,U2. ↑[d,e] T1 ≡  𝕗{I} V2. U2 →
228                       ∃∃V1,U1. ↑[d,e] V1 ≡ V2 & ↑[d,e] U1 ≡ U2 &
229                                T1 = 𝕗{I} V1. U1.
230 /2/ qed.