]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambda_delta/Basic_2/grammar/item.ma
- first properties of strongly normalizing terms
[helm.git] / matita / matita / contribs / lambda_delta / Basic_2 / grammar / item.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "Ground_2/arith.ma".
16 include "Basic_2/notation.ma".
17
18 (* ITEMS ********************************************************************)
19
20 (* atomic items *)
21 inductive item0: Type[0] ≝
22    | Sort: nat → item0 (* sort: starting at 0 *)
23    | LRef: nat → item0 (* reference by index: starting at 0 *)
24    | GRef: nat → item0 (* reference by position: starting at 0 *)
25 .
26
27 (* binary binding items *)
28 inductive bind2: Type[0] ≝
29   | Abbr: bind2 (* abbreviation *)
30   | Abst: bind2 (* abstraction *)
31 .
32
33 (* binary non-binding items *)
34 inductive flat2: Type[0] ≝
35   | Appl: flat2 (* application *)
36   | Cast: flat2 (* explicit type annotation *)
37 .
38
39 (* binary items *)
40 inductive item2: Type[0] ≝
41   | Bind2: bind2 → item2 (* binding item *)
42   | Flat2: flat2 → item2 (* non-binding item *)
43 .
44
45 coercion item2_of_bind2: ∀I:bind2.item2 ≝ Bind2 on _I:bind2 to item2.
46
47 coercion item2_of_flat2: ∀I:flat2.item2 ≝ Flat2 on _I:flat2 to item2.
48
49 (* Basic properties *********************************************************)
50
51 axiom item0_eq_dec: ∀I1,I2:item0. Decidable (I1 = I2).
52
53 (* Basic_1: was: bind_dec *)
54 axiom bind2_eq_dec: ∀I1,I2:bind2. Decidable (I1 = I2).
55
56 (* Basic_1: was: flat_dec *)
57 axiom flat2_eq_dec: ∀I1,I2:flat2. Decidable (I1 = I2).
58
59 (* Basic_1: was: kind_dec *)
60 axiom item2_eq_dec: ∀I1,I2:item2. Decidable (I1 = I2).
61
62 (* Basic_1: removed theorems 21:
63             s_S s_plus s_plus_sym s_minus minus_s_s s_le s_lt s_inj s_inc
64             s_arith0 s_arith1
65             r_S r_plus r_plus_sym r_minus r_dis s_r r_arith0 r_arith1
66             not_abbr_abst bind_dec_not
67 *)