]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambda_delta/Basic_2/grammar/thom.ma
- first properties of strongly normalizing terms
[helm.git] / matita / matita / contribs / lambda_delta / Basic_2 / grammar / thom.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "Basic_2/grammar/term_simple.ma".
16
17 (* HOMOMORPHIC TERMS ********************************************************)
18
19 inductive thom: relation term ≝
20    | thom_atom: ∀I. thom (⓪{I}) (⓪{I})
21    | thom_abst: ∀V1,V2,T1,T2. thom (ⓛV1. T1) (ⓛV2. T2)
22    | thom_appl: ∀V1,V2,T1,T2. thom T1 T2 → 𝐒[T1] → 𝐒[T2] →
23                 thom (ⓐV1. T1) (ⓐV2. T2)
24 .
25
26 interpretation "homomorphic (term)" 'napart T1 T2 = (thom T1 T2).
27
28 (* Basic properties *********************************************************)
29
30 lemma thom_sym: ∀T1,T2. T1 ≈ T2 → T2 ≈ T1.
31 #T1 #T2 #H elim H -T1 -T2 /2 width=1/
32 qed.
33
34 lemma thom_refl2: ∀T1,T2. T1 ≈ T2 → T2 ≈ T2.
35 #T1 #T2 #H elim H -T1 -T2 // /2 width=1/
36 qed.
37
38 lemma thom_refl1: ∀T1,T2. T1 ≈ T2 → T1 ≈ T1.
39 /3 width=2/ qed.
40
41 lemma simple_thom_repl_dx: ∀T1,T2. T1 ≈ T2 → 𝐒[T1] → 𝐒[T2].
42 #T1 #T2 #H elim H -T1 -T2 //
43 #V1 #V2 #T1 #T2 #H
44 elim (simple_inv_bind … H)
45 qed. (**) (* remove from index *)
46
47 lemma simple_thom_repl_sn: ∀T1,T2. T1 ≈ T2 → 𝐒[T2] → 𝐒[T1].
48 /3 width=3/ qed-.
49
50 (* Basic inversion lemmas ***************************************************)
51
52 fact thom_inv_bind1_aux: ∀T1,T2. T1 ≈ T2 → ∀I,W1,U1. T1 = ⓑ{I}W1.U1 →
53                          ∃∃W2,U2. I = Abst & T2 = ⓛW2. U2.
54 #T1 #T2 * -T1 -T2
55 [ #J #I #W1 #U1 #H destruct
56 | #V1 #V2 #T1 #T2 #I #W1 #U1 #H destruct /2 width=3/
57 | #V1 #V2 #T1 #T2 #H_ #_ #_ #I #W1 #U1 #H destruct
58 ]
59 qed.
60
61 lemma thom_inv_bind1: ∀I,W1,U1,T2. ⓑ{I}W1.U1 ≈ T2 →
62                       ∃∃W2,U2. I = Abst & T2 = ⓛW2. U2.
63 /2 width=5/ qed-.
64
65 fact thom_inv_flat1_aux: ∀T1,T2. T1 ≈ T2 → ∀I,W1,U1. T1 = ⓕ{I}W1.U1 →
66                          ∃∃W2,U2. U1 ≈ U2 & 𝐒[U1] & 𝐒[U2] &
67                                   I = Appl & T2 = ⓐW2. U2.
68 #T1 #T2 * -T1 -T2
69 [ #J #I #W1 #U1 #H destruct
70 | #V1 #V2 #T1 #T2 #I #W1 #U1 #H destruct
71 | #V1 #V2 #T1 #T2 #HT12 #HT1 #HT2 #I #W1 #U1 #H destruct /2 width=5/
72 ]
73 qed.
74
75 lemma thom_inv_flat1: ∀I,W1,U1,T2. ⓕ{I}W1.U1 ≈ T2 →
76                       ∃∃W2,U2. U1 ≈ U2 & 𝐒[U1] & 𝐒[U2] &
77                                I = Appl & T2 = ⓐW2. U2.
78 /2 width=4/ qed-.
79
80 (* Basic_1: removed theorems 7:
81             iso_gen_sort iso_gen_lref iso_gen_head iso_refl iso_trans
82             iso_flats_lref_bind_false iso_flats_flat_bind_false
83 *)