]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambda_delta/Basic_2/substitution/gdrop.ma
- lambda_delta: "conversion" and "equivalence" components started
[helm.git] / matita / matita / contribs / lambda_delta / Basic_2 / substitution / gdrop.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "Basic_2/grammar/genv.ma".
16
17 (* GLOBAL ENVIRONMENT SLICING ***********************************************)
18
19 inductive gdrop (e:nat): relation genv ≝
20 | gdrop_gt: ∀G. |G| ≤ e → gdrop e G (⋆)
21 | gdrop_eq: ∀G. |G| = e + 1 → gdrop e G G
22 | gdrop_lt: ∀I,G1,G2,V. e < |G1| → gdrop e G1 G2 → gdrop e (G1. ⓑ{I} V) G2
23 .
24
25 interpretation "global slicing" 
26    'RDrop e G1 G2 = (gdrop e G1 G2).
27
28 (* basic inversion lemmas ***************************************************)
29
30 lemma gdrop_inv_gt: ∀G1,G2,e. ⇩[e] G1 ≡ G2 → |G1| ≤ e → G2 = ⋆.
31 #G1 #G2 #e * -G1 -G2 //
32 [ #G #H >H -H >commutative_plus #H
33   lapply (le_plus_to_le_r … 0 H) -H #H
34   lapply (le_n_O_to_eq … H) -H #H destruct
35 | #I #G1 #G2 #V #H1 #_ #H2
36   lapply (le_to_lt_to_lt … H2 H1) -H2 -H1 normalize in ⊢ (? % ? → ?); >commutative_plus #H
37   lapply (lt_plus_to_lt_l … 0 H) -H #H
38   elim (lt_zero_false … H)
39 ]
40 qed-.
41
42 lemma gdrop_inv_eq: ∀G1,G2,e. ⇩[e] G1 ≡ G2 → |G1| = e + 1 → G1 = G2.
43 #G1 #G2 #e * -G1 -G2 //
44 [ #G #H1 #H2 >H2 in H1; -H2 >commutative_plus #H
45   lapply (le_plus_to_le_r … 0 H) -H #H
46   lapply (le_n_O_to_eq … H) -H #H destruct
47 | #I #G1 #G2 #V #H1 #_ normalize #H2
48   <(injective_plus_l … H2) in H1; -H2 #H
49   elim (lt_refl_false … H)
50 ]
51 qed-.
52
53 fact gdrop_inv_lt_aux: ∀I,G,G1,G2,V,e. ⇩[e] G ≡ G2 → G = G1. ⓑ{I} V →
54                        e < |G1| → ⇩[e] G1 ≡ G2.
55 #I #G #G1 #G2 #V #e * -G -G2
56 [ #G #H1 #H destruct #H2
57   lapply (le_to_lt_to_lt … H1 H2) -H1 -H2 normalize in ⊢ (? % ? → ?); >commutative_plus #H
58   lapply (lt_plus_to_lt_l … 0 H) -H #H
59   elim (lt_zero_false … H)
60 | #G #H1 #H2 destruct >(injective_plus_l … H1) -H1 #H
61   elim (lt_refl_false … H)
62 | #J #G #G2 #W #_ #HG2 #H destruct //
63 ]
64 qed.
65
66 lemma gdrop_inv_lt: ∀I,G1,G2,V,e.
67                     ⇩[e] G1. ⓑ{I} V ≡ G2 → e < |G1| → ⇩[e] G1 ≡ G2.
68 /2 width=5/ qed-.
69
70 (* Basic properties *********************************************************)
71
72 lemma gdrop_total: ∀e,G1. ∃G2. ⇩[e] G1 ≡ G2.
73 #e #G1 elim G1 -G1 /3 width=2/
74 #I #V #G1 * #G2 #HG12
75 elim (lt_or_eq_or_gt e (|G1|)) #He
76 [ /3 width=2/
77 | destruct /3 width=2/
78 | @ex_intro [2: @gdrop_gt normalize /2 width=1/ | skip ] (**) (* explicit constructor *)
79 ]
80 qed.