1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "Basic_2/substitution/ltps.ma".
17 (* PARALLEL SUBSTITUTION ON LOCAL ENVIRONMENTS ******************************)
19 lemma ltps_drop_conf_ge: ∀L0,L1,d1,e1. L0 [d1, e1] ≫ L1 →
20 ∀L2,e2. ↓[0, e2] L0 ≡ L2 →
21 d1 + e1 ≤ e2 → ↓[0, e2] L1 ≡ L2.
22 #L0 #L1 #d1 #e1 #H elim H -H L0 L1 d1 e1
23 [ #d1 #e1 #L2 #e2 #H >(drop_inv_atom1 … H) -H //
25 | normalize #K0 #K1 #I #V0 #V1 #e1 #_ #_ #IHK01 #L2 #e2 #H #He12
26 lapply (plus_le_weak … He12) #He2
27 lapply (drop_inv_drop1 … H ?) -H // #HK0L2
28 lapply (IHK01 … HK0L2 ?) -IHK01 HK0L2 /2/
29 | #K0 #K1 #I #V0 #V1 #d1 #e1 >plus_plus_comm_23 #_ #_ #IHK01 #L2 #e2 #H #Hd1e2
30 lapply (plus_le_weak … Hd1e2) #He2
31 lapply (drop_inv_drop1 … H ?) -H // #HK0L2
32 lapply (IHK01 … HK0L2 ?) -IHK01 HK0L2 /2/
36 lemma ltps_drop_trans_ge: ∀L1,L0,d1,e1. L1 [d1, e1] ≫ L0 →
37 ∀L2,e2. ↓[0, e2] L0 ≡ L2 →
38 d1 + e1 ≤ e2 → ↓[0, e2] L1 ≡ L2.
39 #L1 #L0 #d1 #e1 #H elim H -H L1 L0 d1 e1
40 [ #d1 #e1 #L2 #e2 #H >(drop_inv_atom1 … H) -H //
42 | normalize #K1 #K0 #I #V1 #V0 #e1 #_ #_ #IHK10 #L2 #e2 #H #He12
43 lapply (plus_le_weak … He12) #He2
44 lapply (drop_inv_drop1 … H ?) -H // #HK0L2
45 lapply (IHK10 … HK0L2 ?) -IHK10 HK0L2 /2/
46 | #K0 #K1 #I #V1 #V0 #d1 #e1 >plus_plus_comm_23 #_ #_ #IHK10 #L2 #e2 #H #Hd1e2
47 lapply (plus_le_weak … Hd1e2) #He2
48 lapply (drop_inv_drop1 … H ?) -H // #HK0L2
49 lapply (IHK10 … HK0L2 ?) -IHK10 HK0L2 /2/
53 lemma ltps_drop_conf_be: ∀L0,L1,d1,e1. L0 [d1, e1] ≫ L1 →
54 ∀L2,e2. ↓[0, e2] L0 ≡ L2 → d1 ≤ e2 → e2 ≤ d1 + e1 →
55 ∃∃L. L2 [0, d1 + e1 - e2] ≫ L & ↓[0, e2] L1 ≡ L.
56 #L0 #L1 #d1 #e1 #H elim H -H L0 L1 d1 e1
57 [ #d1 #e1 #L2 #e2 #H >(drop_inv_atom1 … H) -H /2/
58 | normalize #L #I #V #L2 #e2 #HL2 #_ #He2
59 lapply (le_n_O_to_eq … He2) -He2 #H destruct -e2;
60 lapply (drop_inv_refl … HL2) -HL2 #H destruct -L2 /2/
61 | normalize #K0 #K1 #I #V0 #V1 #e1 #HK01 #HV01 #IHK01 #L2 #e2 #H #_ #He21
62 lapply (drop_inv_O1 … H) -H * * #He2 #HK0L2
63 [ destruct -IHK01 He21 e2 L2 <minus_n_O /3/
64 | -HK01 HV01 <minus_le_minus_minus_comm //
65 elim (IHK01 … HK0L2 ? ?) -IHK01 HK0L2 /3/
67 | #K0 #K1 #I #V0 #V1 #d1 #e1 >plus_plus_comm_23 #_ #_ #IHK01 #L2 #e2 #H #Hd1e2 #He2de1
68 lapply (plus_le_weak … Hd1e2) #He2
69 <minus_le_minus_minus_comm //
70 lapply (drop_inv_drop1 … H ?) -H // #HK0L2
71 elim (IHK01 … HK0L2 ? ?) -IHK01 HK0L2 /3/
75 lemma ltps_drop_trans_be: ∀L1,L0,d1,e1. L1 [d1, e1] ≫ L0 →
76 ∀L2,e2. ↓[0, e2] L0 ≡ L2 → d1 ≤ e2 → e2 ≤ d1 + e1 →
77 ∃∃L. L [0, d1 + e1 - e2] ≫ L2 & ↓[0, e2] L1 ≡ L.
78 #L1 #L0 #d1 #e1 #H elim H -H L1 L0 d1 e1
79 [ #d1 #e1 #L2 #e2 #H >(drop_inv_atom1 … H) -H /2/
80 | normalize #L #I #V #L2 #e2 #HL2 #_ #He2
81 lapply (le_n_O_to_eq … He2) -He2 #H destruct -e2;
82 lapply (drop_inv_refl … HL2) -HL2 #H destruct -L2 /2/
83 | normalize #K1 #K0 #I #V1 #V0 #e1 #HK10 #HV10 #IHK10 #L2 #e2 #H #_ #He21
84 lapply (drop_inv_O1 … H) -H * * #He2 #HK0L2
85 [ destruct -IHK10 He21 e2 L2 <minus_n_O /3/
86 | -HK10 HV10 <minus_le_minus_minus_comm //
87 elim (IHK10 … HK0L2 ? ?) -IHK10 HK0L2 /3/
89 | #K1 #K0 #I #V1 #V0 #d1 #e1 >plus_plus_comm_23 #_ #_ #IHK10 #L2 #e2 #H #Hd1e2 #He2de1
90 lapply (plus_le_weak … Hd1e2) #He2
91 <minus_le_minus_minus_comm //
92 lapply (drop_inv_drop1 … H ?) -H // #HK0L2
93 elim (IHK10 … HK0L2 ? ?) -IHK10 HK0L2 /3/
97 lemma ltps_drop_conf_le: ∀L0,L1,d1,e1. L0 [d1, e1] ≫ L1 →
98 ∀L2,e2. ↓[0, e2] L0 ≡ L2 → e2 ≤ d1 →
99 ∃∃L. L2 [d1 - e2, e1] ≫ L & ↓[0, e2] L1 ≡ L.
100 #L0 #L1 #d1 #e1 #H elim H -H L0 L1 d1 e1
101 [ #d1 #e1 #L2 #e2 #H >(drop_inv_atom1 … H) -H /2/
103 | normalize #K0 #K1 #I #V0 #V1 #e1 #HK01 #HV01 #_ #L2 #e2 #H #He2
104 lapply (le_n_O_to_eq … He2) -He2 #He2 destruct -e2;
105 lapply (drop_inv_refl … H) -H #H destruct -L2 /3/
106 | #K0 #K1 #I #V0 #V1 #d1 #e1 #HK01 #HV01 #IHK01 #L2 #e2 #H #He2d1
107 lapply (drop_inv_O1 … H) -H * * #He2 #HK0L2
108 [ destruct -IHK01 He2d1 e2 L2 <minus_n_O /3/
109 | -HK01 HV01 <minus_le_minus_minus_comm //
110 elim (IHK01 … HK0L2 ?) -IHK01 HK0L2 /3/
115 lemma ltps_drop_trans_le: ∀L1,L0,d1,e1. L1 [d1, e1] ≫ L0 →
116 ∀L2,e2. ↓[0, e2] L0 ≡ L2 → e2 ≤ d1 →
117 ∃∃L. L [d1 - e2, e1] ≫ L2 & ↓[0, e2] L1 ≡ L.
118 #L1 #L0 #d1 #e1 #H elim H -H L1 L0 d1 e1
119 [ #d1 #e1 #L2 #e2 #H >(drop_inv_atom1 … H) -H /2/
121 | normalize #K1 #K0 #I #V1 #V0 #e1 #HK10 #HV10 #_ #L2 #e2 #H #He2
122 lapply (le_n_O_to_eq … He2) -He2 #He2 destruct -e2;
123 lapply (drop_inv_refl … H) -H #H destruct -L2 /3/
124 | #K1 #K0 #I #V1 #V0 #d1 #e1 #HK10 #HV10 #IHK10 #L2 #e2 #H #He2d1
125 lapply (drop_inv_O1 … H) -H * * #He2 #HK0L2
126 [ destruct -IHK10 He2d1 e2 L2 <minus_n_O /3/
127 | -HK10 HV10 <minus_le_minus_minus_comm //
128 elim (IHK10 … HK0L2 ?) -IHK10 HK0L2 /3/