]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambda_delta/Basic_2/substitution/tps_lift.ma
ff42a7ac490ca55b0ce33ea5cafd683d714c32ab
[helm.git] / matita / matita / contribs / lambda_delta / Basic_2 / substitution / tps_lift.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "Basic_2/substitution/ldrop_ldrop.ma".
16 include "Basic_2/substitution/tps.ma".
17
18 (* PARTIAL SUBSTITUTION ON TERMS ********************************************)
19
20 (* Advanced inversion lemmas ************************************************)
21
22 fact tps_inv_refl_SO2_aux: ∀L,T1,T2,d,e. L ⊢ T1 [d, e] ≫ T2 → e = 1 →
23                            ∀K,V. ↓[0, d] L ≡ K. 𝕓{Abst} V → T1 = T2.
24 #L #T1 #T2 #d #e #H elim H -L -T1 -T2 -d -e
25 [ //
26 | #L #K0 #V0 #W #i #d #e #Hdi #Hide #HLK0 #_ #H destruct
27   >(le_to_le_to_eq … Hdi ?) /2 width=1/ -d #K #V #HLK
28   lapply (ldrop_mono … HLK0 … HLK) #H destruct
29 | #L #I #V1 #V2 #T1 #T2 #d #e #_ #_ #IHV12 #IHT12 #H1 #K #V #HLK
30   >(IHV12 H1 … HLK) -IHV12 >(IHT12 H1 K V) -IHT12 // /2 width=1/
31 | #L #I #V1 #V2 #T1 #T2 #d #e #_ #_ #IHV12 #IHT12 #H1 #K #V #HLK
32   >(IHV12 H1 … HLK) -IHV12 >(IHT12 H1 … HLK) -IHT12 //
33 ]
34 qed.
35
36 lemma tps_inv_refl_SO2: ∀L,T1,T2,d. L ⊢ T1 [d, 1] ≫ T2 →
37                         ∀K,V. ↓[0, d] L ≡ K. 𝕓{Abst} V → T1 = T2.
38 /2 width=8/ qed-.
39
40 (* Relocation properties ****************************************************)
41
42 (* Basic_1: was: subst1_lift_lt *)
43 lemma tps_lift_le: ∀K,T1,T2,dt,et. K ⊢ T1 [dt, et] ≫ T2 →
44                    ∀L,U1,U2,d,e. ↓[d, e] L ≡ K →
45                    ↑[d, e] T1 ≡ U1 → ↑[d, e] T2 ≡ U2 →
46                    dt + et ≤ d →
47                    L ⊢ U1 [dt, et] ≫ U2.
48 #K #T1 #T2 #dt #et #H elim H -K -T1 -T2 -dt -et
49 [ #K #I #dt #et #L #U1 #U2 #d #e #_ #H1 #H2 #_
50   >(lift_mono … H1 … H2) -H1 -H2 //
51 | #K #KV #V #W #i #dt #et #Hdti #Hidet #HKV #HVW #L #U1 #U2 #d #e #HLK #H #HWU2 #Hdetd
52   lapply (lt_to_le_to_lt … Hidet … Hdetd) -Hdetd #Hid
53   lapply (lift_inv_lref1_lt … H … Hid) -H #H destruct
54   elim (lift_trans_ge … HVW … HWU2 ?) -W // <minus_plus #W #HVW #HWU2
55   elim (ldrop_trans_le … HLK … HKV ?) -K /2 width=1/ #X #HLK #H
56   elim (ldrop_inv_skip2 … H ?) -H /2 width=1/ -Hid #K #Y #_ #HVY
57   >(lift_mono … HVY … HVW) -Y -HVW #H destruct /2 width=4/
58 | #K #I #V1 #V2 #T1 #T2 #dt #et #_ #_ #IHV12 #IHT12 #L #U1 #U2 #d #e #HLK #H1 #H2 #Hdetd
59   elim (lift_inv_bind1 … H1) -H1 #VV1 #TT1 #HVV1 #HTT1 #H1
60   elim (lift_inv_bind1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct
61   @tps_bind [ /2 width=6/ | @IHT12 /2 width=6/ ] (**) (* /3 width=6/ is too slow, arith3 needed to avoid crash *)
62 | #K #I #V1 #V2 #T1 #T2 #dt #et #_ #_ #IHV12 #IHT12 #L #U1 #U2 #d #e #HLK #H1 #H2 #Hdetd
63   elim (lift_inv_flat1 … H1) -H1 #VV1 #TT1 #HVV1 #HTT1 #H1
64   elim (lift_inv_flat1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct /3 width=6/
65 ]
66 qed.
67
68 lemma tps_lift_be: ∀K,T1,T2,dt,et. K ⊢ T1 [dt, et] ≫ T2 →
69                    ∀L,U1,U2,d,e. ↓[d, e] L ≡ K →
70                    ↑[d, e] T1 ≡ U1 → ↑[d, e] T2 ≡ U2 →
71                    dt ≤ d → d ≤ dt + et →
72                    L ⊢ U1 [dt, et + e] ≫ U2.
73 #K #T1 #T2 #dt #et #H elim H -K -T1 -T2 -dt -et
74 [ #K #I #dt #et #L #U1 #U2 #d #e #_ #H1 #H2 #_ #_
75   >(lift_mono … H1 … H2) -H1 -H2 //
76 | #K #KV #V #W #i #dt #et #Hdti #Hidet #HKV #HVW #L #U1 #U2 #d #e #HLK #H #HWU2 #Hdtd #_
77   elim (lift_inv_lref1 … H) -H * #Hid #H destruct
78   [ -Hdtd
79     lapply (lt_to_le_to_lt … (dt+et+e) Hidet ?) // -Hidet #Hidete
80     elim (lift_trans_ge … HVW … HWU2 ?) -W // <minus_plus #W #HVW #HWU2
81     elim (ldrop_trans_le … HLK … HKV ?) -K /2 width=1/ #X #HLK #H
82     elim (ldrop_inv_skip2 … H ?) -H /2 width=1/ -Hid #K #Y #_ #HVY
83     >(lift_mono … HVY … HVW) -V #H destruct /2 width=4/
84   | -Hdti
85     lapply (transitive_le … Hdtd Hid) -Hdtd #Hdti
86     lapply (lift_trans_be … HVW … HWU2 ? ?) -W // /2 width=1/ >plus_plus_comm_23 #HVU2
87     lapply (ldrop_trans_ge_comm … HLK … HKV ?) -K // -Hid /3 width=4/
88   ]
89 | #K #I #V1 #V2 #T1 #T2 #dt #et #_ #_ #IHV12 #IHT12 #L #U1 #U2 #d #e #HLK #H1 #H2 #Hdtd #Hddet
90   elim (lift_inv_bind1 … H1) -H1 #VV1 #TT1 #HVV1 #HTT1 #H1
91   elim (lift_inv_bind1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct
92   @tps_bind [ /2 width=6/ | @IHT12 [3,4: // | skip |5,6: /2 width=1/ | /2 width=1/ ] 
93             ] (**) (* /3 width=6/ is too slow, arith3 needed to avoid crash, simplification like tps_lift_le is too slow *)
94 | #K #I #V1 #V2 #T1 #T2 #dt #et #_ #_ #IHV12 #IHT12 #L #U1 #U2 #d #e #HLK #H1 #H2 #Hdetd
95   elim (lift_inv_flat1 … H1) -H1 #VV1 #TT1 #HVV1 #HTT1 #H1
96   elim (lift_inv_flat1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct /3 width=6/
97 ]
98 qed.
99
100 (* Basic_1: was: subst1_lift_ge *)
101 lemma tps_lift_ge: ∀K,T1,T2,dt,et. K ⊢ T1 [dt, et] ≫ T2 →
102                    ∀L,U1,U2,d,e. ↓[d, e] L ≡ K →
103                    ↑[d, e] T1 ≡ U1 → ↑[d, e] T2 ≡ U2 →
104                    d ≤ dt →
105                    L ⊢ U1 [dt + e, et] ≫ U2.
106 #K #T1 #T2 #dt #et #H elim H -K -T1 -T2 -dt -et
107 [ #K #I #dt #et #L #U1 #U2 #d #e #_ #H1 #H2 #_
108   >(lift_mono … H1 … H2) -H1 -H2 //
109 | #K #KV #V #W #i #dt #et #Hdti #Hidet #HKV #HVW #L #U1 #U2 #d #e #HLK #H #HWU2 #Hddt
110   lapply (transitive_le … Hddt … Hdti) -Hddt #Hid
111   lapply (lift_inv_lref1_ge … H … Hid) -H #H destruct
112   lapply (lift_trans_be … HVW … HWU2 ? ?) -W // /2 width=1/ >plus_plus_comm_23 #HVU2
113   lapply (ldrop_trans_ge_comm … HLK … HKV ?) -K // -Hid /3 width=4/
114 | #K #I #V1 #V2 #T1 #T2 #dt #et #_ #_ #IHV12 #IHT12 #L #U1 #U2 #d #e #HLK #H1 #H2 #Hddt
115   elim (lift_inv_bind1 … H1) -H1 #VV1 #TT1 #HVV1 #HTT1 #H1
116   elim (lift_inv_bind1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct
117   @tps_bind [ /2 width=5/ | /3 width=5/ ] (**) (* explicit constructor *)
118 | #K #I #V1 #V2 #T1 #T2 #dt #et #_ #_ #IHV12 #IHT12 #L #U1 #U2 #d #e #HLK #H1 #H2 #Hddt
119   elim (lift_inv_flat1 … H1) -H1 #VV1 #TT1 #HVV1 #HTT1 #H1
120   elim (lift_inv_flat1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct /3 width=5/
121 ]
122 qed.
123
124 (* Basic_1: was: subst1_gen_lift_lt *)
125 lemma tps_inv_lift1_le: ∀L,U1,U2,dt,et. L ⊢ U1 [dt, et] ≫ U2 →
126                         ∀K,d,e. ↓[d, e] L ≡ K → ∀T1. ↑[d, e] T1 ≡ U1 →
127                         dt + et ≤ d →
128                         ∃∃T2. K ⊢ T1 [dt, et] ≫ T2 & ↑[d, e] T2 ≡ U2.
129 #L #U1 #U2 #dt #et #H elim H -L -U1 -U2 -dt -et
130 [ #L * #i #dt #et #K #d #e #_ #T1 #H #_
131   [ lapply (lift_inv_sort2 … H) -H #H destruct /2 width=3/
132   | elim (lift_inv_lref2 … H) -H * #Hid #H destruct /3 width=3/
133   | lapply (lift_inv_gref2 … H) -H #H destruct /2 width=3/
134   ]
135 | #L #KV #V #W #i #dt #et #Hdti #Hidet #HLKV #HVW #K #d #e #HLK #T1 #H #Hdetd
136   lapply (lt_to_le_to_lt … Hidet … Hdetd) -Hdetd #Hid
137   lapply (lift_inv_lref2_lt … H … Hid) -H #H destruct
138   elim (ldrop_conf_lt … HLK … HLKV ?) -L // #L #U #HKL #_ #HUV
139   elim (lift_trans_le … HUV … HVW ?) -V // >arith_a2 // -Hid /3 width=4/
140 | #L #I #V1 #V2 #U1 #U2 #dt #et #_ #_ #IHV12 #IHU12 #K #d #e #HLK #X #H #Hdetd
141   elim (lift_inv_bind2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
142   elim (IHV12 … HLK … HWV1 ?) -V1 // #W2 #HW12 #HWV2
143   elim (IHU12 … HTU1 ?) -IHU12 -HTU1 [3: /2 width=1/ |4: @ldrop_skip // |2: skip ] -HLK -Hdetd (**) (* /3 width=5/ is too slow *)
144   /3 width=5/
145 | #L #I #V1 #V2 #U1 #U2 #dt #et #_ #_ #IHV12 #IHU12 #K #d #e #HLK #X #H #Hdetd
146   elim (lift_inv_flat2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
147   elim (IHV12 … HLK … HWV1 ?) -V1 //
148   elim (IHU12 … HLK … HTU1 ?) -U1 -HLK // /3 width=5/
149 ]
150 qed.
151
152 lemma tps_inv_lift1_be: ∀L,U1,U2,dt,et. L ⊢ U1 [dt, et] ≫ U2 →
153                         ∀K,d,e. ↓[d, e] L ≡ K → ∀T1. ↑[d, e] T1 ≡ U1 →
154                         dt ≤ d → d + e ≤ dt + et →
155                         ∃∃T2. K ⊢ T1 [dt, et - e] ≫ T2 & ↑[d, e] T2 ≡ U2.
156 #L #U1 #U2 #dt #et #H elim H -L -U1 -U2 -dt -et
157 [ #L * #i #dt #et #K #d #e #_ #T1 #H #_
158   [ lapply (lift_inv_sort2 … H) -H #H destruct /2 width=3/
159   | elim (lift_inv_lref2 … H) -H * #Hid #H destruct /3 width=3/
160   | lapply (lift_inv_gref2 … H) -H #H destruct /2 width=3/
161   ]
162 | #L #KV #V #W #i #dt #et #Hdti #Hidet #HLKV #HVW #K #d #e #HLK #T1 #H #Hdtd #Hdedet
163   lapply (le_fwd_plus_plus_ge … Hdtd … Hdedet) #Heet
164   elim (lift_inv_lref2 … H) -H * #Hid #H destruct
165   [ -Hdtd -Hidet
166     lapply (lt_to_le_to_lt … (dt + (et - e)) Hid ?) [ <le_plus_minus /2 width=1/ ] -Hdedet #Hidete
167     elim (ldrop_conf_lt … HLK … HLKV ?) -L // #L #U #HKL #_ #HUV
168     elim (lift_trans_le … HUV … HVW ?) -V // >arith_a2 // -Hid /3 width=4/
169   | -Hdti -Hdedet
170     lapply (transitive_le … (i - e) Hdtd ?) /2 width=1/ -Hdtd #Hdtie
171     lapply (plus_le_weak … Hid) #Hei
172     lapply (ldrop_conf_ge … HLK … HLKV ?) -L // #HKV
173     elim (lift_split … HVW d (i - e + 1) ? ? ?) -HVW [4: // |2,3: /2 width=1/ ] -Hid >arith_e2 // /4 width=4/
174   ]
175 | #L #I #V1 #V2 #U1 #U2 #dt #et #_ #_ #IHV12 #IHU12 #K #d #e #HLK #X #H #Hdtd #Hdedet
176   elim (lift_inv_bind2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
177   elim (IHV12 … HLK … HWV1 ? ?) -V1 // #W2 #HW12 #HWV2
178   elim (IHU12 … HTU1 ? ?) -U1 [5: @ldrop_skip // |2: skip |3: >plus_plus_comm_23 >(plus_plus_comm_23 dt) /2 width=1/ |4: /2 width=1/ ]
179   /3 width=5/
180 | #L #I #V1 #V2 #U1 #U2 #dt #et #_ #_ #IHV12 #IHU12 #K #d #e #HLK #X #H #Hdtd #Hdedet
181   elim (lift_inv_flat2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
182   elim (IHV12 … HLK … HWV1 ? ?) -V1 //
183   elim (IHU12 … HLK … HTU1 ? ?) -U1 -HLK // /3 width=5/
184 ]
185 qed.
186
187 (* Basic_1: was: subst1_gen_lift_ge *)
188 lemma tps_inv_lift1_ge: ∀L,U1,U2,dt,et. L ⊢ U1 [dt, et] ≫ U2 →
189                         ∀K,d,e. ↓[d, e] L ≡ K → ∀T1. ↑[d, e] T1 ≡ U1 →
190                         d + e ≤ dt →
191                         ∃∃T2. K ⊢ T1 [dt - e, et] ≫ T2 & ↑[d, e] T2 ≡ U2.
192 #L #U1 #U2 #dt #et #H elim H -L -U1 -U2 -dt -et
193 [ #L * #i #dt #et #K #d #e #_ #T1 #H #_
194   [ lapply (lift_inv_sort2 … H) -H #H destruct /2 width=3/
195   | elim (lift_inv_lref2 … H) -H * #Hid #H destruct /3 width=3/
196   | lapply (lift_inv_gref2 … H) -H #H destruct /2 width=3/
197   ]
198 | #L #KV #V #W #i #dt #et #Hdti #Hidet #HLKV #HVW #K #d #e #HLK #T1 #H #Hdedt
199   lapply (transitive_le … Hdedt … Hdti) #Hdei
200   lapply (plus_le_weak … Hdedt) -Hdedt #Hedt
201   lapply (plus_le_weak … Hdei) #Hei  
202   lapply (lift_inv_lref2_ge … H … Hdei) -H #H destruct
203   lapply (ldrop_conf_ge … HLK … HLKV ?) -L // #HKV
204   elim (lift_split … HVW d (i - e + 1) ? ? ?) -HVW [4: // |2,3: normalize /2 width=1/ ] -Hdei >arith_e2 // #V0 #HV10 #HV02
205   @ex2_1_intro /3 width=4/ (**) (* explicitc constructors *)
206 | #L #I #V1 #V2 #U1 #U2 #dt #et #_ #_ #IHV12 #IHU12 #K #d #e #HLK #X #H #Hdetd
207   elim (lift_inv_bind2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
208   lapply (plus_le_weak … Hdetd) #Hedt
209   elim (IHV12 … HLK … HWV1 ?) -V1 // #W2 #HW12 #HWV2
210   elim (IHU12 … HTU1 ?) -U1 [4: @ldrop_skip // |2: skip |3: /2 width=1/ ]
211   <plus_minus // /3 width=5/
212 | #L #I #V1 #V2 #U1 #U2 #dt #et #_ #_ #IHV12 #IHU12 #K #d #e #HLK #X #H #Hdetd
213   elim (lift_inv_flat2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
214   elim (IHV12 … HLK … HWV1 ?) -V1 //
215   elim (IHU12 … HLK … HTU1 ?) -U1 -HLK // /3 width=5/
216 ]
217 qed.
218
219 (* Basic_1: was: subst1_gen_lift_eq *)
220 lemma tps_inv_lift1_eq: ∀L,U1,U2,d,e.
221                         L ⊢ U1 [d, e] ≫ U2 → ∀T1. ↑[d, e] T1 ≡ U1 → U1 = U2.
222 #L #U1 #U2 #d #e #H elim H -L -U1 -U2 -d -e
223 [ //
224 | #L #K #V #W #i #d #e #Hdi #Hide #_ #_ #T1 #H
225   elim (lift_inv_lref2 … H) -H * #H
226   [ lapply (le_to_lt_to_lt … Hdi … H) -Hdi -H #H
227     elim (lt_refl_false … H)
228   | lapply (lt_to_le_to_lt … Hide … H) -Hide -H #H
229     elim (lt_refl_false … H)
230   ]
231 | #L #I #V1 #V2 #T1 #T2 #d #e #_ #_ #IHV12 #IHT12 #X #HX
232   elim (lift_inv_bind2 … HX) -HX #V #T #HV1 #HT1 #H destruct
233   >IHV12 // >IHT12 //
234 | #L #I #V1 #V2 #T1 #T2 #d #e #_ #_ #IHV12 #IHT12 #X #HX
235   elim (lift_inv_flat2 … HX) -HX #V #T #HV1 #HT1 #H destruct
236   >IHV12 // >IHT12 //
237 ]
238 qed.
239 (*
240       Theorem subst0_gen_lift_rev_ge: (t1,v,u2,i,h,d:?) 
241                                       (subst0 i v t1 (lift h d u2)) ->
242                                       (le (plus d h) i) ->
243                                       (EX u1 | (subst0 (minus i h) v u1 u2) &
244                                                t1 = (lift h d u1)
245                                       ).
246
247
248       Theorem subst0_gen_lift_rev_lelt: (t1,v,u2,i,h,d:?)
249                                         (subst0 i v t1 (lift h d u2)) ->
250                                         (le d i) -> (lt i (plus d h)) ->
251                                         (EX u1 | t1 = (lift (minus (plus d h) (S i)) (S i) u1)).
252 *)
253 lemma tps_inv_lift1_up: ∀L,U1,U2,dt,et. L ⊢ U1 [dt, et] ≫ U2 →
254                         ∀K,d,e. ↓[d, e] L ≡ K → ∀T1. ↑[d, e] T1 ≡ U1 →
255                         d ≤ dt → dt ≤ d + e → d + e ≤ dt + et →
256                         ∃∃T2. K ⊢ T1 [d, dt + et - (d + e)] ≫ T2 & ↑[d, e] T2 ≡ U2.
257 #L #U1 #U2 #dt #et #HU12 #K #d #e #HLK #T1 #HTU1 #Hddt #Hdtde #Hdedet
258 elim (tps_split_up … HU12 (d + e) ? ?) -HU12 // -Hdedet #U #HU1 #HU2
259 lapply (tps_weak … HU1 d e ? ?) -HU1 // <plus_minus_m_m_comm // -Hddt -Hdtde #HU1
260 lapply (tps_inv_lift1_eq … HU1 … HTU1) -HU1 #HU1 destruct
261 elim (tps_inv_lift1_ge … HU2 … HLK … HTU1 ?) -U -L // <minus_plus_m_m /2 width=3/
262 qed.
263
264 lemma tps_inv_lift1_be_up: ∀L,U1,U2,dt,et. L ⊢ U1 [dt, et] ≫ U2 →
265                            ∀K,d,e. ↓[d, e] L ≡ K → ∀T1. ↑[d, e] T1 ≡ U1 →
266                            dt ≤ d → dt + et ≤ d + e →
267                            ∃∃T2. K ⊢ T1 [dt, d - dt] ≫ T2 & ↑[d, e] T2 ≡ U2.
268 #L #U1 #U2 #dt #et #HU12 #K #d #e #HLK #T1 #HTU1 #Hdtd #Hdetde
269 lapply (tps_weak … HU12 dt (d + e - dt) ? ?) -HU12 // /2 width=3/ -Hdetde #HU12
270 elim (tps_inv_lift1_be … HU12 … HLK … HTU1 ? ?) -U1 -L // /2 width=3/
271 qed.