]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss.ma
456a3aae092175e57197acb75539f1faecf08870
[helm.git] / matita / matita / contribs / lambda_delta / Basic_2 / unfold / ltpss.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "Basic_2/substitution/ltps.ma".
16 include "Basic_2/unfold/tpss.ma".
17
18 (* PARTIAL UNFOLD ON LOCAL ENVIRONMENTS *************************************)
19
20 definition ltpss: nat → nat → relation lenv ≝
21                   λd,e. TC … (ltps d e).
22
23 interpretation "partial unfold (local environment)"
24    'PSubstStar L1 d e L2 = (ltpss d e L1 L2).
25
26 (* Basic eliminators ********************************************************)
27
28 lemma ltpss_ind: ∀d,e,L1. ∀R: lenv → Prop. R L1 →
29                  (∀L,L2. L1 [d, e] ≫* L → L [d, e] ≫ L2 → R L → R L2) →
30                  ∀L2. L1 [d, e] ≫* L2 → R L2.
31 #d #e #L1 #R #HL1 #IHL1 #L2 #HL12 @(TC_star_ind … HL1 IHL1 … HL12) //
32 qed-.
33
34 (* Basic properties *********************************************************)
35
36 lemma ltpss_strap: ∀L1,L,L2,d,e.
37                    L1 [d, e] ≫ L → L [d, e] ≫* L2 → L1 [d, e] ≫* L2. 
38 /2/ qed.
39
40 lemma ltpss_refl: ∀L,d,e. L [d, e] ≫* L.
41 /2/ qed.
42
43 (* Basic inversion lemmas ***************************************************)
44
45 lemma ltpss_inv_refl_O2: ∀d,L1,L2. L1 [d, 0] ≫* L2 → L1 = L2.
46 #d #L1 #L2 #H @(ltpss_ind … H) -L2 //
47 #L #L2 #_ #HL2 #IHL <(ltps_inv_refl_O2 … HL2) -HL2 //
48 qed-.
49
50 lemma ltpss_inv_atom1: ∀d,e,L2. ⋆ [d, e] ≫* L2 → L2 = ⋆.
51 #d #e #L2 #H @(ltpss_ind … H) -L2 //
52 #L #L2 #_ #HL2 #IHL destruct -L
53 >(ltps_inv_atom1 … HL2) -HL2 //
54 qed-.
55
56 fact ltpss_inv_atom2_aux: ∀d,e,L1,L2.
57                           L1 [d, e] ≫* L2 → L2 = ⋆ → L1 = ⋆.
58 #d #e #L1 #L2 #H @(ltpss_ind … H) -L2 //
59 #L2 #L #_ #HL2 #IHL2 #H destruct -L;
60 lapply (ltps_inv_atom2 … HL2) -HL2 /2/
61 qed.
62
63 lemma ltpss_inv_atom2: ∀d,e,L1. L1 [d, e] ≫* ⋆ → L1 = ⋆.
64 /2 width=5/ qed-.
65 (*
66 fact ltps_inv_tps22_aux: ∀d,e,L1,L2. L1 [d, e] ≫ L2 → d = 0 → 0 < e →
67                          ∀K2,I,V2. L2 = K2. 𝕓{I} V2 →
68                          ∃∃K1,V1. K1 [0, e - 1] ≫ K2 &
69                                   K2 ⊢ V1 [0, e - 1] ≫ V2 &
70                                   L1 = K1. 𝕓{I} V1.
71 #d #e #L1 #L2 * -d e L1 L2
72 [ #d #e #_ #_ #K1 #I #V1 #H destruct
73 | #L1 #I #V #_ #H elim (lt_refl_false … H)
74 | #L1 #L2 #I #V1 #V2 #e #HL12 #HV12 #_ #_ #K2 #J #W2 #H destruct -L2 I V2 /2 width=5/
75 | #L1 #L2 #I #V1 #V2 #d #e #_ #_ #H elim (plus_S_eq_O_false … H)
76 ]
77 qed.
78
79 lemma ltps_inv_tps22: ∀e,L1,K2,I,V2. L1 [0, e] ≫ K2. 𝕓{I} V2 → 0 < e →
80                       ∃∃K1,V1. K1 [0, e - 1] ≫ K2 & K2 ⊢ V1 [0, e - 1] ≫ V2 &
81                                L1 = K1. 𝕓{I} V1.
82 /2 width=5/ qed.
83
84 fact ltps_inv_tps12_aux: ∀d,e,L1,L2. L1 [d, e] ≫ L2 → 0 < d →
85                          ∀I,K2,V2. L2 = K2. 𝕓{I} V2 →
86                          ∃∃K1,V1. K1 [d - 1, e] ≫ K2 &
87                                   K2 ⊢ V1 [d - 1, e] ≫ V2 &
88                                   L1 = K1. 𝕓{I} V1.
89 #d #e #L1 #L2 * -d e L1 L2
90 [ #d #e #_ #I #K2 #V2 #H destruct
91 | #L #I #V #H elim (lt_refl_false … H)
92 | #L1 #L2 #I #V1 #V2 #e #_ #_ #H elim (lt_refl_false … H)
93 | #L1 #L2 #I #V1 #V2 #d #e #HL12 #HV12 #_ #J #K2 #W2 #H destruct -L2 I V2
94   /2 width=5/
95 ]
96 qed.
97
98 lemma ltps_inv_tps12: ∀L1,K2,I,V2,d,e. L1 [d, e] ≫ K2. 𝕓{I} V2 → 0 < d →
99                       ∃∃K1,V1. K1 [d - 1, e] ≫ K2 &
100                                   K2 ⊢ V1 [d - 1, e] ≫ V2 &
101                                   L1 = K1. 𝕓{I} V1.
102 /2/ qed.
103 *)