]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss_ltpss.ma
refactoring completed!
[helm.git] / matita / matita / contribs / lambda_delta / Basic_2 / unfold / ltpss_ltpss.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "Basic_2/unfold/ltpss_tpss.ma".
16
17 (* PARTIAL UNFOLD ON LOCAL ENVIRONMENTS *************************************)
18
19 (* Main properties **********************************************************)
20
21 theorem ltpss_trans_eq: ∀L1,L,L2,d,e.
22                         L1 [d, e] ≫* L → L [d, e] ≫* L2 → L1 [d, e] ≫* L2. 
23 /2/ qed.
24
25 lemma ltpss_tpss2: ∀L1,L2,I,V1,V2,e.
26                    L1 [0, e] ≫* L2 → L2 ⊢ V1 [0, e] ≫* V2 →
27                    L1. 𝕓{I} V1 [0, e + 1] ≫* L2. 𝕓{I} V2.
28 #L1 #L2 #I #V1 #V2 #e #HL12 #H @(tpss_ind … H) -V2
29 [ /2/
30 | #V #V2 #_ #HV2 #IHV @(ltpss_trans_eq … IHV) /2/
31 ]
32 qed.
33
34 lemma ltpss_tpss2_lt: ∀L1,L2,I,V1,V2,e.
35                       L1 [0, e - 1] ≫* L2 → L2 ⊢ V1 [0, e - 1] ≫* V2 →
36                       0 < e → L1. 𝕓{I} V1 [0, e] ≫* L2. 𝕓{I} V2.
37 #L1 #L2 #I #V1 #V2 #e #HL12 #HV12 #He
38 >(plus_minus_m_m e 1) /2/
39 qed.
40
41 lemma ltpss_tpss1: ∀L1,L2,I,V1,V2,d,e.
42                    L1 [d, e] ≫* L2 → L2 ⊢ V1 [d, e] ≫* V2 →
43                    L1. 𝕓{I} V1 [d + 1, e] ≫* L2. 𝕓{I} V2.
44 #L1 #L2 #I #V1 #V2 #d #e #HL12 #H @(tpss_ind … H) -V2
45 [ /2/
46 | #V #V2 #_ #HV2 #IHV @(ltpss_trans_eq … IHV) /2/
47 ]
48 qed.
49
50 lemma ltpss_tpss1_lt: ∀L1,L2,I,V1,V2,d,e.
51                       L1 [d - 1, e] ≫* L2 → L2 ⊢ V1 [d - 1, e] ≫* V2 →
52                       0 < d → L1. 𝕓{I} V1 [d, e] ≫* L2. 𝕓{I} V2.
53 #L1 #L2 #I #V1 #V2 #d #e #HL12 #HV12 #Hd
54 >(plus_minus_m_m d 1) /2/
55 qed.