1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "Basic_2/unfold/tpss_ltps.ma".
16 include "Basic_2/unfold/ltpss.ma".
18 (* PARTIAL UNFOLD ON LOCAL ENVIRONMENTS *************************************)
20 (* Properties concerning partial unfold on terms ****************************)
22 lemma ltpss_tpss_trans_ge: ∀L1,L0,d1,e1. L1 [d1, e1] ▶* L0 →
23 ∀T2,U2,d2,e2. L0 ⊢ T2 [d2, e2] ▶* U2 →
24 d1 + e1 ≤ d2 → L1 ⊢ T2 [d2, e2] ▶* U2.
25 #L1 #L0 #d1 #e1 #H @(ltpss_ind … H) -L0 //
26 #L #L0 #_ #HL0 #IHL #T2 #U2 #d2 #e2 #HTU2 #Hde1d2
27 lapply (ltps_tpss_trans_ge … HL0 HTU2) -HL0 -HTU2 /2 width=1/
30 lemma ltpss_tps_trans_ge: ∀L1,L0,d1,e1. L1 [d1, e1] ▶* L0 →
31 ∀T2,U2,d2,e2. L0 ⊢ T2 [d2, e2] ▶ U2 →
32 d1 + e1 ≤ d2 → L1 ⊢ T2 [d2, e2] ▶* U2.
33 #L1 #L0 #d1 #e1 #HL10 #T2 #U2 #d2 #e2 #HTU2 #Hde1d2
34 @(ltpss_tpss_trans_ge … HL10 … Hde1d2) /2 width=1/ (**) (* /3 width=6/ is too slow *)
37 lemma ltpss_tpss_trans_eq: ∀L0,L1,d,e. L0 [d, e] ▶* L1 →
38 ∀T2,U2. L1 ⊢ T2 [d, e] ▶* U2 → L0 ⊢ T2 [d, e] ▶* U2.
39 #L0 #L1 #d #e #H @(ltpss_ind … H) -L1
41 | #L #L1 #_ #HL1 #IHL #T2 #U2 #HTU2
42 lapply (ltps_tpss_trans_eq … HL1 HTU2) -HL1 -HTU2 /2 width=1/
46 lemma ltpss_tps_trans_eq: ∀L0,L1,d,e. L0 [d, e] ▶* L1 →
47 ∀T2,U2. L1 ⊢ T2 [d, e] ▶ U2 → L0 ⊢ T2 [d, e] ▶* U2.
50 lemma ltpss_tpss_conf_ge: ∀L0,L1,T2,U2,d1,e1,d2,e2. d1 + e1 ≤ d2 →
51 L0 ⊢ T2 [d2, e2] ▶* U2 → L0 [d1, e1] ▶* L1 →
52 L1 ⊢ T2 [d2, e2] ▶* U2.
53 #L0 #L1 #T2 #U2 #d1 #e1 #d2 #e2 #Hde1d2 #HTU2 #H @(ltpss_ind … H) -L1
55 | -HTU2 #L #L1 #_ #HL1 #IHL
56 lapply (ltps_tpss_conf_ge … HL1 IHL) -HL1 -IHL //
60 lemma ltpss_tps_conf_ge: ∀L0,L1,T2,U2,d1,e1,d2,e2. d1 + e1 ≤ d2 →
61 L0 ⊢ T2 [d2, e2] ▶ U2 → L0 [d1, e1] ▶* L1 →
62 L1 ⊢ T2 [d2, e2] ▶* U2.
63 #L0 #L1 #T2 #U2 #d1 #e1 #d2 #e2 #Hde1d2 #HTU2 #HL01
64 @(ltpss_tpss_conf_ge … Hde1d2 … HL01) /2 width=1/ (**) (* /3 width=6/ is too slow *)
67 lemma ltpss_tpss_conf_eq: ∀L0,L1,T2,U2,d,e.
68 L0 ⊢ T2 [d, e] ▶* U2 → L0 [d, e] ▶* L1 →
69 ∃∃T. L1 ⊢ T2 [d, e] ▶* T & L1 ⊢ U2 [d, e] ▶* T.
70 #L0 #L1 #T2 #U2 #d #e #HTU2 #H @(ltpss_ind … H) -L1
72 | -HTU2 #L #L1 #_ #HL1 * #W2 #HTW2 #HUW2
73 elim (ltps_tpss_conf … HL1 HTW2) -HTW2 #T #HT2 #HW2T
74 elim (ltps_tpss_conf … HL1 HUW2) -HL1 -HUW2 #U #HU2 #HW2U
75 elim (tpss_conf_eq … HW2T … HW2U) -HW2T -HW2U #V #HTV #HUV
76 lapply (tpss_trans_eq … HT2 … HTV) -T
77 lapply (tpss_trans_eq … HU2 … HUV) -U /2 width=3/
81 lemma ltpss_tps_conf_eq: ∀L0,L1,T2,U2,d,e.
82 L0 ⊢ T2 [d, e] ▶ U2 → L0 [d, e] ▶* L1 →
83 ∃∃T. L1 ⊢ T2 [d, e] ▶* T & L1 ⊢ U2 [d, e] ▶* T.
86 lemma ltpss_tpss_conf: ∀L1,T1,T2,d,e. L1 ⊢ T1 [d, e] ▶* T2 →
87 ∀L2,ds,es. L1 [ds, es] ▶* L2 →
88 ∃∃T. L2 ⊢ T1 [d, e] ▶* T & L1 ⊢ T2 [ds, es] ▶* T.
89 #L1 #T1 #T2 #d #e #HT12 #L2 #ds #es #H @(ltpss_ind … H) -L2
91 | #L #L2 #HL1 #HL2 * #T #HT1 #HT2
92 elim (ltps_tpss_conf … HL2 HT1) -HT1 #T0 #HT10 #HT0
93 lapply (ltps_tpss_trans_eq … HL2 … HT0) -HL2 -HT0 #HT0
94 lapply (ltpss_tpss_trans_eq … HL1 … HT0) -HL1 -HT0 #HT0
95 lapply (tpss_trans_eq … HT2 … HT0) -T /2 width=3/
99 lemma ltpss_tps_conf: ∀L1,T1,T2,d,e. L1 ⊢ T1 [d, e] ▶ T2 →
100 ∀L2,ds,es. L1 [ds, es] ▶* L2 →
101 ∃∃T. L2 ⊢ T1 [d, e] ▶* T & L1 ⊢ T2 [ds, es] ▶* T.
104 (* Advanced properties ******************************************************)
106 lemma ltpss_tps2: ∀L1,L2,I,e.
107 L1 [0, e] ▶* L2 → ∀V1,V2. L2 ⊢ V1 [0, e] ▶ V2 →
108 L1. ⓑ{I} V1 [0, e + 1] ▶* L2. ⓑ{I} V2.
109 #L1 #L2 #I #e #H @(ltpss_ind … H) -L2
111 | #L #L2 #_ #HL2 #IHL #V1 #V2 #HV12
112 elim (ltps_tps_trans … HV12 … HL2) -HV12 #V #HV1 #HV2
113 lapply (IHL … HV1) -IHL -HV1 #HL1
114 @step /2 width=5/ (**) (* /3 width=5/ is too slow *)
118 lemma ltpss_tps2_lt: ∀L1,L2,I,V1,V2,e.
119 L1 [0, e - 1] ▶* L2 → L2 ⊢ V1 [0, e - 1] ▶ V2 →
120 0 < e → L1. ⓑ{I} V1 [0, e] ▶* L2. ⓑ{I} V2.
121 #L1 #L2 #I #V1 #V2 #e #HL12 #HV12 #He
122 >(plus_minus_m_m e 1) // /2 width=1/
125 lemma ltpss_tps1: ∀L1,L2,I,d,e. L1 [d, e] ▶* L2 →
126 ∀V1,V2. L2 ⊢ V1 [d, e] ▶ V2 →
127 L1. ⓑ{I} V1 [d + 1, e] ▶* L2. ⓑ{I} V2.
128 #L1 #L2 #I #d #e #H @(ltpss_ind … H) -L2
130 | #L #L2 #_ #HL2 #IHL #V1 #V2 #HV12
131 elim (ltps_tps_trans … HV12 … HL2) -HV12 #V #HV1 #HV2
132 lapply (IHL … HV1) -IHL -HV1 #HL1
133 @step /2 width=5/ (**) (* /3 width=5/ is too slow *)
137 lemma ltpss_tps1_lt: ∀L1,L2,I,V1,V2,d,e.
138 L1 [d - 1, e] ▶* L2 → L2 ⊢ V1 [d - 1, e] ▶ V2 →
139 0 < d → L1. ⓑ{I} V1 [d, e] ▶* L2. ⓑ{I} V2.
140 #L1 #L2 #I #V1 #V2 #d #e #HL12 #HV12 #Hd
141 >(plus_minus_m_m d 1) // /2 width=1/
144 (* Advanced forward lemmas **************************************************)
146 lemma ltpss_fwd_tpss21: ∀e,K1,I,V1,L2. 0 < e → K1. ⓑ{I} V1 [0, e] ▶* L2 →
147 ∃∃K2,V2. K1 [0, e - 1] ▶* K2 & K1 ⊢ V1 [0, e - 1] ▶* V2 &
149 #e #K1 #I #V1 #L2 #He #H @(ltpss_ind … H) -L2
151 | #L #L2 #_ #HL2 * #K #V #HK1 #HV1 #H destruct
152 elim (ltps_inv_tps21 … HL2 ?) -HL2 // #K2 #V2 #HK2 #HV2 #H
153 lapply (ltps_tps_trans_eq … HV2 … HK2) -HV2 #HV2
154 lapply (ltpss_tpss_trans_eq … HK1 … HV2) -HV2 #HV2 /3 width=5/
158 lemma ltpss_fwd_tpss11: ∀d,e,I,K1,V1,L2. 0 < d → K1. ⓑ{I} V1 [d, e] ▶* L2 →
159 ∃∃K2,V2. K1 [d - 1, e] ▶* K2 &
160 K1 ⊢ V1 [d - 1, e] ▶* V2 &
162 #d #e #K1 #I #V1 #L2 #Hd #H @(ltpss_ind … H) -L2
164 | #L #L2 #_ #HL2 * #K #V #HK1 #HV1 #H destruct
165 elim (ltps_inv_tps11 … HL2 ?) -HL2 // #K2 #V2 #HK2 #HV2 #H
166 lapply (ltps_tps_trans_eq … HV2 … HK2) -HV2 #HV2
167 lapply (ltpss_tpss_trans_eq … HK1 … HV2) -HV2 #HV2 /3 width=5/