1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ground_2/arith.ma".
16 include "basic_2/notation.ma".
18 (* ITEMS ********************************************************************)
21 inductive item0: Type[0] ≝
22 | Sort: nat → item0 (* sort: starting at 0 *)
23 | LRef: nat → item0 (* reference by index: starting at 0 *)
24 | GRef: nat → item0 (* reference by position: starting at 0 *)
27 (* binary binding items *)
28 inductive bind2: Type[0] ≝
29 | Abbr: bind2 (* abbreviation *)
30 | Abst: bind2 (* abstraction *)
33 (* binary non-binding items *)
34 inductive flat2: Type[0] ≝
35 | Appl: flat2 (* application *)
36 | Cast: flat2 (* explicit type annotation *)
40 inductive item2: Type[0] ≝
41 | Bind2: bind2 → item2 (* binding item *)
42 | Flat2: flat2 → item2 (* non-binding item *)
49 (* Basic properties *********************************************************)
51 axiom item0_eq_dec: ∀I1,I2:item0. Decidable (I1 = I2).
53 (* Basic_1: was: bind_dec *)
54 axiom bind2_eq_dec: ∀I1,I2:bind2. Decidable (I1 = I2).
56 (* Basic_1: was: flat_dec *)
57 axiom flat2_eq_dec: ∀I1,I2:flat2. Decidable (I1 = I2).
59 (* Basic_1: was: kind_dec *)
60 axiom item2_eq_dec: ∀I1,I2:item2. Decidable (I1 = I2).
62 (* Basic_1: removed theorems 21:
63 s_S s_plus s_plus_sym s_minus minus_s_s s_le s_lt s_inj s_inc
65 r_S r_plus r_plus_sym r_minus r_dis s_r r_arith0 r_arith1
66 not_abbr_abst bind_dec_not