]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambda_delta/basic_2/grammar/lenv_append.ma
- we set up the support for the "bt-reduction" of Automath literature
[helm.git] / matita / matita / contribs / lambda_delta / basic_2 / grammar / lenv_append.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/grammar/lenv_length.ma".
16
17 (* LOCAL ENVIRONMENTS *******************************************************)
18
19 let rec append L K on K ≝ match K with
20 [ LAtom       ⇒ L
21 | LPair K I V ⇒ (append L K). ⓑ{I} V
22 ].
23
24 interpretation "append (local environment)" 'Append L1 L2 = (append L1 L2).
25
26 (* Basic properties *********************************************************)
27
28 lemma append_atom_sn: ∀L. ⋆ @@ L = L.
29 #L elim L -L normalize //
30 qed.
31
32 lemma append_assoc: associative … append.
33 #L1 #L2 #L3 elim L3 -L3 normalize //
34 qed.
35
36 lemma append_length: ∀L1,L2. |L1 @@ L2| = |L1| + |L2|.
37 #L1 #L2 elim L2 -L2 normalize //
38 qed.
39
40 (* Basic inversion lemmas ***************************************************)
41
42 lemma append_inj_sn: ∀K1,K2,L1,L2. L1 @@ K1 = L2 @@ K2 → |K1| = |K2| →
43                      L1 = L2 ∧ K1 = K2.
44 #K1 elim K1 -K1
45 [ * normalize /2 width=1/
46   #K2 #I2 #V2 #L1 #L2 #_ <plus_n_Sm #H destruct
47 | #K1 #I1 #V1 #IH * normalize
48   [ #L1 #L2 #_ <plus_n_Sm #H destruct
49   | #K2 #I2 #V2 #L1 #L2 #H1 #H2 destruct (**) (* destruct does not simplify well *)
50     -H1 (**) (* destruct: the destucted equality is not erased *)
51     elim (IH … e0 ?) -IH /2 width=1/ -H2 #H1 #H2 destruct /2 width=1/
52   ]
53 ]
54 qed-.
55
56 (* Note: lemma 750 *)
57 lemma append_inj_dx: ∀K1,K2,L1,L2. L1 @@ K1 = L2 @@ K2 → |L1| = |L2| →
58                      L1 = L2 ∧ K1 = K2.
59 #K1 elim K1 -K1
60 [ * normalize /2 width=1/
61   #K2 #I2 #V2 #L1 #L2 #H1 #H2 destruct
62   normalize in H2; >append_length in H2; #H
63   elim (plus_xySz_x_false … H)
64 | #K1 #I1 #V1 #IH * normalize
65   [ #L1 #L2 #H1 #H2 destruct
66     normalize in H2; >append_length in H2; #H
67     elim (plus_xySz_x_false … (sym_eq … H))
68   | #K2 #I2 #V2 #L1 #L2 #H1 #H2 destruct (**) (* destruct does not simplify well *)
69     -H1 (**) (* destruct: the destucted equality is not erased *)
70     elim (IH … e0 ?) -IH // -H2 #H1 #H2 destruct /2 width=1/
71   ]
72 ]
73 qed-.
74
75 lemma length_inv_pos_dx_append: ∀d,L. |L| = d + 1 →
76                                 ∃∃I,K,V. |K| = d & L = ⋆.ⓑ{I}V @@ K.
77 #d @(nat_ind_plus … d) -d
78 [ #L #H 
79   elim (length_inv_pos_dx … H) -H #I #K #V #H
80   >(length_inv_zero_dx … H) -H #H destruct
81   @ex2_3_intro [4: /2 width=2/ |5: // |1,2,3: skip ] (* /3/ does not work *)
82 | #d #IHd #L #H
83   elim (length_inv_pos_dx … H) -H #I #K #V #H
84   elim (IHd … H) -IHd -H #I0 #K0 #V0 #H1 #H2 #H3 destruct
85   @(ex2_3_intro … (K0.ⓑ{I}V)) //
86 ]
87 qed-.
88
89 (* Basic_eliminators ********************************************************)
90
91 fact lenv_ind_dx_aux: ∀R:predicate lenv. R ⋆ →
92                       (∀I,L,V. R L → R (⋆.ⓑ{I}V @@ L)) →
93                       ∀d,L. |L| = d → R L.
94 #R #Hatom #Hpair #d @(nat_ind_plus … d) -d
95 [ #L #H >(length_inv_zero_dx … H) -H //
96 | #d #IH #L #H
97   elim (length_inv_pos_dx_append … H) -H #I #K #V #H1 #H2 destruct /3 width=1/
98 ]
99 qed-.
100
101 lemma lenv_ind_dx: ∀R:predicate lenv. R ⋆ →
102                    (∀I,L,V. R L → R (⋆.ⓑ{I}V @@ L)) →
103                    ∀L. R L.
104 /3 width=2 by lenv_ind_dx_aux/ qed-.
105
106 (* Advanced inversion lemmas ************************************************)
107
108 lemma length_inv_pos_sn_append: ∀d,L. 1 + d = |L| →
109                                 ∃∃I,K,V. d = |K| & L = ⋆. ⓑ{I}V @@ K.
110 #d >commutative_plus @(nat_ind_plus … d) -d
111 [ #L #H elim (length_inv_pos_sn … H) -H #I #K #V #H1 #H2 destruct
112   >(length_inv_zero_sn … H1) -K
113   @(ex2_3_intro … (⋆)) // (**) (* explicit constructor *)
114 | #d #IHd #L #H elim (length_inv_pos_sn … H) -H #I #K #V #H1 #H2 destruct
115   >H1 in IHd; -H1 #IHd
116   elim (IHd K ?) -IHd // #J #L #W #H1 #H2 destruct
117   @(ex2_3_intro … (L.ⓑ{I}V)) // (**) (* explicit constructor *)
118   >append_length /2 width=1/
119 ]
120 qed-.