]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambda_delta/basic_2/reducibility/fpr.ma
3910615656c51e32cd6174241a6e87aa52f60a02
[helm.git] / matita / matita / contribs / lambda_delta / basic_2 / reducibility / fpr.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/reducibility/tpr.ma".
16
17 (* CONTEXT-FREE PARALLEL REDUCTION ON CLOSURES ******************************)
18
19 definition fpr: bi_relation lenv term ≝
20                 λL1,T1,L2,T2. |L1| = |L2| ∧ L1 @@ T1 ➡ L2 @@ T2.
21
22 interpretation
23    "context-free parallel reduction (closure)"
24    'FocalizedPRed L1 T1 L2 T2 = (fpr L1 T1 L2 T2).
25
26 (* Basic properties *********************************************************)
27
28 lemma fpr_refl: bi_reflexive … fpr.
29 /2 width=1/ qed.
30
31 lemma fpr_shift: ∀I1,I2,L1,L2,V1,V2,T1,T2.
32                  ⦃L1, -ⓑ{I1}V1.T1⦄ ➡ ⦃L2, -ⓑ{I2}V2.T2⦄ →
33                  ⦃L1.ⓑ{I1}V1, T1⦄ ➡ ⦃L2.ⓑ{I2}V2, T2⦄.
34 #I1 #I2 #L1 #L2 #V1 #V2 #T1 #T2 * #HL12 #HT12
35 @conj // normalize // (**) (* explicit constructor *)
36 qed.
37
38 (* Basic inversion lemmas ***************************************************)
39
40 lemma fpr_inv_atom1: ∀L2,T1,T2. ⦃⋆, T1⦄ ➡ ⦃L2, T2⦄ → T1 ➡ T2 ∧ L2 = ⋆.
41 #L2 #T1 #T2 * #H
42 lapply (length_inv_zero_sn … H) -H #H destruct /2 width=1/
43 qed-.
44
45 lemma fpr_inv_atom3: ∀L1,T1,T2. ⦃L1,T1⦄ ➡ ⦃⋆,T2⦄ → T1 ➡ T2 ∧ L1 = ⋆.
46 #L1 #T1 #T2 * #H
47 lapply (length_inv_zero_dx … H) -H #H destruct /2 width=1/
48 qed-.
49
50 (* Basic forward lemmas *****************************************************)
51
52 lemma fpr_fwd_pair1: ∀I1,K1,L2,V1,T1,T2. ⦃K1.ⓑ{I1}V1, T1⦄ ➡ ⦃L2, T2⦄ →
53                      ∃∃I2,K2,V2. ⦃K1, -ⓑ{I1}V1.T1⦄ ➡ ⦃K2, -ⓑ{I2}V2.T2⦄  &
54                                  L2 = K2.ⓑ{I2}V2.
55 #I1 #K1 #L2 #V1 #T1 #T2 * #H
56 elim (length_inv_pos_sn … H) -H #I2 #K2 #V2 #HK12 #H destruct /3 width=5/
57 qed-.
58
59 lemma fpr_fwd_pair3: ∀I2,L1,K2,V2,T1,T2. ⦃L1, T1⦄ ➡ ⦃K2.ⓑ{I2}V2, T2⦄ →
60                      ∃∃I1,K1,V1. ⦃K1, -ⓑ{I1}V1.T1⦄ ➡ ⦃K2, -ⓑ{I2}V2.T2⦄  &
61                                  L1 = K1.ⓑ{I1}V1.
62 #I2 #L1 #K2 #V2 #T1 #T2 * #H
63 elim (length_inv_pos_dx … H) -H #I1 #K1 #V1 #HK12 #H destruct /3 width=5/
64 qed-.