]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambda_delta/basic_2/reducibility/fpr.ma
b4c15e85687ebdcd87b282dabecbfc8956cc936f
[helm.git] / matita / matita / contribs / lambda_delta / basic_2 / reducibility / fpr.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/reducibility/tpr.ma".
16
17 (* FOCALIZED PARALLEL REDUCTION ON CLOSURES *********************************)
18
19 definition fpr: bi_relation lenv term ≝
20                 λL1,T1,L2,T2. |L1| = |L2| ∧ L1 @@ T1 ➡ L2 @@ T2.
21
22 interpretation
23    "focalized parallel reduction (closure)"
24    'FocalizedPRed L1 T1 L2 T2 = (fpr L1 T1 L2 T2).
25
26 (* Basic properties *********************************************************)
27
28 lemma fpr_refl: bi_reflexive … fpr.
29 /2 width=1/ qed.
30
31 (* Basic inversion lemmas ***************************************************)
32
33 lemma fpr_inv_atom1: ∀L2,T1,T2. ⦃⋆, T1⦄ ➡ ⦃L2, T2⦄ → T1 ➡ T2 ∧ L2 = ⋆.
34 #L2 #T1 #T2 * #H
35 lapply (length_inv_zero_sn … H) -H #H destruct /2 width=1/
36 qed-.
37 (*
38 lemma fpr_inv_pair1: ∀I,K1,L2,V1,T1,T2. ⦃K1.ⓑ{I}V1, T1⦄ ➡ ⦃L2, T2⦄ →
39                      ∃∃K2,V2. ⦃K1, -ⓑ{I}V1.T1⦄ ➡ ⦃K2, -ⓑ{I}V2.T2⦄  &
40                               L2 = K2.ⓑ{I}V2.
41 #I1 #K1 #L2 #V1 #T1 #T2 * #H
42 elim (length_inv_pos_sn … H) -H #I2 #K2 #V2 #HK12 #H destruct #H
43 elim (tpr_fwd_shift_bind_minus … H) // #_ #H0 destruct /3 width=4/
44 qed-.
45 *)
46 lemma fpr_inv_atom3: ∀L1,T1,T2. ⦃L1,T1⦄ ➡ ⦃⋆,T2⦄ → T1 ➡ T2 ∧ L1 = ⋆.
47 #L1 #T1 #T2 * #H
48 lapply (length_inv_zero_dx … H) -H #H destruct /2 width=1/
49 qed-.
50 (*
51 lemma fpr_inv_pair3: ∀I,L1,K2,V2,T1,T2. ⦃L1, T1⦄ ➡ ⦃K2.ⓑ{I}V2, T2⦄ →
52                      ∃∃K1,V1. ⦃K1, -ⓑ{I}V1.T1⦄ ➡ ⦃K2, -ⓑ{I}V2.T2⦄  &
53                               L1 = K1.ⓑ{I}V1.
54 #I2 #L1 #K2 #V2 #T1 #T2 * #H
55 elim (length_inv_pos_dx … H) -H #I1 #K1 #V1 #HK12 #H destruct #H
56 elim (tpr_fwd_shift_bind_minus … H) // #_ #H0 destruct /3 width=4/
57 qed-.
58 *)