1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2/unfold/ltpss_dx_ltpss_dx.ma".
16 include "basic_2/reducibility/ltpr_ldrop.ma".
18 (* CONTEXT-FREE PARALLEL REDUCTION ON TERMS *********************************)
20 (* Unfold properties ********************************************************)
22 (* Basic_1: was: pr0_subst1 *)
23 lemma tpr_tps_ltpr: ∀T1,T2. T1 ➡ T2 →
24 ∀L1,d,e,U1. L1 ⊢ T1 ▶ [d, e] U1 →
26 ∃∃U2. U1 ➡ U2 & L2 ⊢ T2 ▶* [d, e] U2.
27 #T1 #T2 #H elim H -T1 -T2
29 elim (tps_inv_atom1 … H) -H
30 [ #H destruct /2 width=3/
31 | * #K1 #V1 #i #Hdi #Hide #HLK1 #HVU1 #H #L2 #HL12 destruct
32 elim (ltpr_ldrop_conf … HLK1 … HL12) -L1 #X #H #HLK2
33 elim (ltpr_inv_pair1 … H) -H #K2 #V2 #_ #HV12 #H destruct
34 elim (lift_total V2 0 (i+1)) #U2 #HVU2
35 lapply (tpr_lift … HV12 … HVU1 … HVU2) -V1 #HU12
36 @ex2_1_intro [2: @HU12 | skip | /3 width=4/ ] (**) (* /4 width=6/ is too slow *)
38 | #I #V1 #V2 #T1 #T2 #_ #_ #IHV12 #IHT12 #L1 #d #e #X #H #L2 #HL12
39 elim (tps_inv_flat1 … H) -H #W1 #U1 #HVW1 #HTU1 #H destruct
40 elim (IHV12 … HVW1 … HL12) -V1
41 elim (IHT12 … HTU1 … HL12) -T1 -HL12 /3 width=5/
42 | #a #V1 #V2 #W #T1 #T2 #_ #_ #IHV12 #IHT12 #L1 #d #e #X #H #L2 #HL12
43 elim (tps_inv_flat1 … H) -H #VV1 #Y #HVV1 #HY #HX destruct
44 elim (tps_inv_bind1 … HY) -HY #WW #TT1 #_ #HTT1 #H destruct
45 elim (IHV12 … HVV1 … HL12) -V1 #VV2 #HVV12 #HVV2
46 elim (IHT12 … HTT1 (L2. ⓛWW) ?) -T1 /2 width=1/ -HL12 #TT2 #HTT12 #HTT2
47 lapply (tpss_lsubs_trans … HTT2 (L2. ⓓVV2) ?) -HTT2 /3 width=5/
48 | #a #I #V1 #V2 #T1 #T #T2 #HV12 #_ #HT2 #IHV12 #IHT1 #L1 #d #e #X #H #L2 #HL12
49 elim (tps_inv_bind1 … H) -H #W1 #U1 #HVW1 #HTU1 #H destruct
50 elim (IHV12 … HVW1 … HL12) -V1 #W2 #HW12 #HVW2
51 elim (IHT1 … HTU1 (L2. ⓑ{I} W2) ?) -T1 /2 width=1/ -HL12 #U #HU1 #HTU
52 elim (tpss_strip_neq … HTU … HT2 ?) -T /2 width=1/ #U2 #HU2 #HTU2
53 lapply (tps_lsubs_trans … HU2 (L2. ⓑ{I} V2) ?) -HU2 /2 width=1/ #HU2
54 elim (ltpss_dx_tps_conf … HU2 (L2. ⓑ{I} W2) (d + 1) e ?) -HU2 /2 width=1/ #U3 #HU3 #HU23
55 lapply (tps_lsubs_trans … HU3 (⋆. ⓑ{I} W2) ?) -HU3 /2 width=1/ #HU3
56 lapply (tpss_lsubs_trans … HU23 (L2. ⓑ{I} W2) ?) -HU23 /2 width=1/ #HU23
57 lapply (tpss_trans_eq … HTU2 … HU23) -U2 /3 width=5/
58 | #a #V #V1 #V2 #W1 #W2 #T1 #T2 #_ #HV2 #_ #_ #IHV12 #IHW12 #IHT12 #L1 #d #e #X #H #L2 #HL12
59 elim (tps_inv_flat1 … H) -H #VV1 #Y #HVV1 #HY #HX destruct
60 elim (tps_inv_bind1 … HY) -HY #WW1 #TT1 #HWW1 #HTT1 #H destruct
61 elim (IHV12 … HVV1 … HL12) -V1 #VV2 #HVV12 #HVV2
62 elim (IHW12 … HWW1 … HL12) -W1 #WW2 #HWW12 #HWW2
63 elim (IHT12 … HTT1 (L2. ⓓWW2) ?) -T1 /2 width=1/ -HL12 #TT2 #HTT12 #HTT2
64 elim (lift_total VV2 0 1) #VV #H2VV
65 lapply (tpss_lift_ge … HVV2 (L2. ⓓWW2) … HV2 … H2VV) -V2 /2 width=1/ #HVV
66 @ex2_1_intro [2: @tpr_theta |1: skip |3: @tpss_bind [2: @tpss_flat ] ] /width=11/ (**) (* /4 width=11/ is too slow *)
67 | #V #T1 #T #T2 #_ #HT2 #IHT1 #L1 #d #e #X #H #L2 #HL12
68 elim (tps_inv_bind1 … H) -H #W #U1 #_ #HTU1 #H destruct -V
69 elim (IHT1 … HTU1 (L2.ⓓW) ?) -T1 /2 width=1/ -HL12 #U #HU1 #HTU
70 elim (tpss_inv_lift1_ge … HTU L2 … HT2 ?) -T <minus_plus_m_m /3 width=3/
71 | #V1 #T1 #T2 #_ #IHT12 #L1 #d #e #X #H #L2 #HL12
72 elim (tps_inv_flat1 … H) -H #VV1 #TT1 #HVV1 #HTT1 #H destruct
73 elim (IHT12 … HTT1 … HL12) -T1 -HL12 /3 width=3/
77 lemma tpr_tps_bind: ∀I,V1,V2,T1,T2,U1. V1 ➡ V2 → T1 ➡ T2 →
78 ⋆. ⓑ{I} V1 ⊢ T1 ▶ [0, 1] U1 →
79 ∃∃U2. U1 ➡ U2 & ⋆. ⓑ{I} V2 ⊢ T2 ▶ [0, 1] U2.
80 #I #V1 #V2 #T1 #T2 #U1 #HV12 #HT12 #HTU1
81 elim (tpr_tps_ltpr … HT12 … HTU1 (⋆. ⓑ{I} V2) ?) -T1 /2 width=1/ -V1 #U2 #HU12 #HTU2
82 lapply (tpss_inv_SO2 … HTU2) -HTU2 /2 width=3/
85 lemma tpr_tpss_ltpr: ∀L1,L2. L1 ➡ L2 → ∀T1,T2. T1 ➡ T2 →
86 ∀d,e,U1. L1 ⊢ T1 ▶* [d, e] U1 →
87 ∃∃U2. U1 ➡ U2 & L2 ⊢ T2 ▶* [d, e] U2.
88 #L1 #L2 #HL12 #T1 #T2 #HT12 #d #e #U1 #HTU1 @(tpss_ind … HTU1) -U1
90 | -HT12 #U #U1 #_ #HU1 * #T #HUT #HT2
91 elim (tpr_tps_ltpr … HUT … HU1 … HL12) -U -HL12 #U2 #HU12 #HTU2
92 lapply (tpss_trans_eq … HT2 … HTU2) -T /2 width=3/
96 lemma tpr_tpss_conf: ∀T1,T2. T1 ➡ T2 →
97 ∀L,U1,d,e. L ⊢ T1 ▶* [d, e] U1 →
98 ∃∃U2. U1 ➡ U2 & L ⊢ T2 ▶* [d, e] U2.