1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "Basic_2/static/aaa.ma".
17 (* LOCAL ENVIRONMENT REFINEMENT FOR ATOMIC ARITY ASSIGNMENT *****************)
19 inductive lsuba: relation lenv ≝
20 | lsuba_atom: lsuba (⋆) (⋆)
21 | lsuba_pair: ∀I,L1,L2,V. lsuba L1 L2 → lsuba (L1. ⓑ{I} V) (L2. ⓑ{I} V)
22 | lsuba_abbr: ∀L1,L2,V,W,A. L1 ⊢ V ÷ A → L2 ⊢ W ÷ A →
23 lsuba L1 L2 → lsuba (L1. ⓓV) (L2. ⓛW)
27 "local environment refinement (atomic arity assigment)"
28 'CrSubEqA L1 L2 = (lsuba L1 L2).
30 (* Basic inversion lemmas ***************************************************)
32 fact lsuba_inv_atom1_aux: ∀L1,L2. L1 ÷⊑ L2 → L1 = ⋆ → L2 = ⋆.
35 | #I #L1 #L2 #V #_ #H destruct
36 | #L1 #L2 #V #W #A #_ #_ #_ #H destruct
40 lemma lsuba_inv_atom1: ∀L2. ⋆ ÷⊑ L2 → L2 = ⋆.
43 fact lsuba_inv_pair1_aux: ∀L1,L2. L1 ÷⊑ L2 → ∀I,K1,V. L1 = K1. ⓑ{I} V →
44 (∃∃K2. K1 ÷⊑ K2 & L2 = K2. ⓑ{I} V) ∨
45 ∃∃K2,W,A. K1 ⊢ V ÷ A & K2 ⊢ W ÷ A & K1 ÷⊑ K2 &
46 L2 = K2. ⓛW & I = Abbr.
48 [ #I #K1 #V #H destruct
49 | #J #L1 #L2 #V #HL12 #I #K1 #W #H destruct /3 width=3/
50 | #L1 #L2 #V1 #W2 #A #HV1 #HW2 #HL12 #I #K1 #V #H destruct /3 width=7/
54 lemma lsuba_inv_pair1: ∀I,K1,L2,V. K1. ⓑ{I} V ÷⊑ L2 →
55 (∃∃K2. K1 ÷⊑ K2 & L2 = K2. ⓑ{I} V) ∨
56 ∃∃K2,W,A. K1 ⊢ V ÷ A & K2 ⊢ W ÷ A & K1 ÷⊑ K2 &
57 L2 = K2. ⓛW & I = Abbr.
60 fact lsuba_inv_atom2_aux: ∀L1,L2. L1 ÷⊑ L2 → L2 = ⋆ → L1 = ⋆.
63 | #I #L1 #L2 #V #_ #H destruct
64 | #L1 #L2 #V #W #A #_ #_ #_ #H destruct
68 lemma lsubc_inv_atom2: ∀L1. L1 ÷⊑ ⋆ → L1 = ⋆.
71 fact lsuba_inv_pair2_aux: ∀L1,L2. L1 ÷⊑ L2 → ∀I,K2,W. L2 = K2. ⓑ{I} W →
72 (∃∃K1. K1 ÷⊑ K2 & L1 = K1. ⓑ{I} W) ∨
73 ∃∃K1,V,A. K1 ⊢ V ÷ A & K2 ⊢ W ÷ A & K1 ÷⊑ K2 &
74 L1 = K1. ⓓV & I = Abst.
76 [ #I #K2 #W #H destruct
77 | #J #L1 #L2 #V #HL12 #I #K2 #W #H destruct /3 width=3/
78 | #L1 #L2 #V1 #W2 #A #HV1 #HW2 #HL12 #I #K2 #W #H destruct /3 width=7/
82 lemma lsuba_inv_pair2: ∀I,L1,K2,W. L1 ÷⊑ K2. ⓑ{I} W →
83 (∃∃K1. K1 ÷⊑ K2 & L1 = K1. ⓑ{I} W) ∨
84 ∃∃K1,V,A. K1 ⊢ V ÷ A & K2 ⊢ W ÷ A & K1 ÷⊑ K2 &
85 L1 = K1. ⓓV & I = Abst.
88 (* Basic properties *********************************************************)
90 lemma lsuba_refl: ∀L. L ÷⊑ L.
91 #L elim L -L // /2 width=1/