]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambda_delta/basic_2/unfold/delift.ma
f0935a0413c9b36d6e8b82d4863ca48ab913f7c1
[helm.git] / matita / matita / contribs / lambda_delta / basic_2 / unfold / delift.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/unfold/tpss.ma".
16
17 (* INVERSE BASIC TERM RELOCATION  *******************************************)
18
19 definition delift: nat → nat → lenv → relation term ≝
20                    λd,e,L,T1,T2. ∃∃T. L ⊢ T1 ▶* [d, e] T & ⇧[d, e] T2 ≡ T.
21
22 interpretation "inverse basic relocation (term)"
23    'TSubst L T1 d e T2 = (delift d e L T1 T2).
24
25 (* Basic properties *********************************************************)
26
27 lemma lift_delift: ∀T1,T2,d,e. ⇧[d, e] T1 ≡ T2 →
28                    ∀L. L ⊢ T2 [d, e] ≡ T1.
29 /2 width=3/ qed.
30
31 lemma delift_refl_O2: ∀L,T,d. L ⊢ T [d, 0] ≡ T.
32 /2 width=3/ qed.
33
34 lemma delift_lsubs_conf: ∀L1,T1,T2,d,e. L1 ⊢ T1 [d, e] ≡ T2 →
35                          ∀L2. L1 ≼ [d, e] L2 → L2 ⊢ T1 [d, e] ≡ T2.
36 #L1 #T1 #T2 #d #e * /3 width=3/
37 qed.
38
39 lemma delift_sort: ∀L,d,e,k. L ⊢ ⋆k [d, e] ≡ ⋆k.
40 /2 width=3/ qed.
41
42 lemma delift_lref_lt: ∀L,d,e,i. i < d → L ⊢ #i [d, e] ≡ #i.
43 /3 width=3/ qed.
44
45 lemma delift_lref_ge: ∀L,d,e,i. d + e ≤ i → L ⊢ #i [d, e] ≡ #(i - e).
46 /3 width=3/ qed.
47
48 lemma delift_gref: ∀L,d,e,p. L ⊢ §p [d, e] ≡ §p.
49 /2 width=3/ qed.
50
51 lemma delift_bind: ∀I,L,V1,V2,T1,T2,d,e.
52                    L ⊢ V1 [d, e] ≡ V2 → L. ⓑ{I} V2 ⊢ T1 [d+1, e] ≡ T2 →
53                    L ⊢ ⓑ{I} V1. T1 [d, e] ≡ ⓑ{I} V2. T2.
54 #I #L #V1 #V2 #T1 #T2 #d #e * #V #HV1 #HV2 * #T #HT1 #HT2
55 lapply (tpss_lsubs_conf … HT1 (L. ⓑ{I} V) ?) -HT1 /2 width=1/ /3 width=5/
56 qed.
57
58 lemma delift_flat: ∀I,L,V1,V2,T1,T2,d,e.
59                    L ⊢ V1 [d, e] ≡ V2 → L ⊢ T1 [d, e] ≡ T2 →
60                    L ⊢ ⓕ{I} V1. T1 [d, e] ≡ ⓕ{I} V2. T2.
61 #I #L #V1 #V2 #T1 #T2 #d #e * #V #HV1 #HV2 * /3 width=5/
62 qed.
63
64 (* Basic inversion lemmas ***************************************************)
65
66 lemma delift_inv_sort1: ∀L,U2,d,e,k. L ⊢ ⋆k [d, e] ≡ U2 → U2 = ⋆k.
67 #L #U2 #d #e #k * #U #HU
68 >(tpss_inv_sort1 … HU) -HU #HU2
69 >(lift_inv_sort2 … HU2) -HU2 //
70 qed-.
71
72 lemma delift_inv_gref1: ∀L,U2,d,e,p. L ⊢ §p [d, e] ≡ U2 → U2 = §p.
73 #L #U #d #e #p * #U #HU
74 >(tpss_inv_gref1 … HU) -HU #HU2
75 >(lift_inv_gref2 … HU2) -HU2 //
76 qed-.
77
78 lemma delift_inv_bind1: ∀I,L,V1,T1,U2,d,e. L ⊢ ⓑ{I} V1. T1 [d, e] ≡ U2 →
79                         ∃∃V2,T2. L ⊢ V1 [d, e] ≡ V2 &
80                                  L. ⓑ{I} V2 ⊢ T1 [d+1, e] ≡ T2 &
81                                  U2 = ⓑ{I} V2. T2.
82 #I #L #V1 #T1 #U2 #d #e * #U #HU #HU2
83 elim (tpss_inv_bind1 … HU) -HU #V #T #HV1 #HT1 #X destruct
84 elim (lift_inv_bind2 … HU2) -HU2 #V2 #T2 #HV2 #HT2
85 lapply (tpss_lsubs_conf … HT1 (L. ⓑ{I} V2) ?) -HT1 /2 width=1/ /3 width=5/
86 qed-.
87
88 lemma delift_inv_flat1: ∀I,L,V1,T1,U2,d,e. L ⊢ ⓕ{I} V1. T1 [d, e] ≡ U2 →
89                         ∃∃V2,T2. L ⊢ V1 [d, e] ≡ V2 &
90                                  L ⊢ T1 [d, e] ≡ T2 &
91                                  U2 = ⓕ{I} V2. T2.
92 #I #L #V1 #T1 #U2 #d #e * #U #HU #HU2
93 elim (tpss_inv_flat1 … HU) -HU #V #T #HV1 #HT1 #X destruct
94 elim (lift_inv_flat2 … HU2) -HU2 /3 width=5/
95 qed-.
96
97 lemma delift_inv_refl_O2: ∀L,T1,T2,d. L ⊢ T1 [d, 0] ≡ T2 → T1 = T2.
98 #L #T1 #T2 #d * #T #HT1
99 >(tpss_inv_refl_O2 … HT1) -HT1 #HT2
100 >(lift_inv_refl_O2 … HT2) -HT2 //
101 qed-.