1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2/substitution/lift.ma".
16 include "basic_2/unfold/gr2_plus.ma".
18 (* GENERIC TERM RELOCATION **************************************************)
20 inductive lifts: list2 nat nat → relation term ≝
21 | lifts_nil : ∀T. lifts ⟠ T T
22 | lifts_cons: ∀T1,T,T2,des,d,e.
23 ⇧[d,e] T1 ≡ T → lifts des T T2 → lifts ({d, e} @ des) T1 T2
26 interpretation "generic relocation (term)"
27 'RLiftStar des T1 T2 = (lifts des T1 T2).
29 (* Basic inversion lemmas ***************************************************)
31 fact lifts_inv_nil_aux: ∀T1,T2,des. ⇧*[des] T1 ≡ T2 → des = ⟠ → T1 = T2.
32 #T1 #T2 #des * -T1 -T2 -des //
33 #T1 #T #T2 #d #e #des #_ #_ #H destruct
36 lemma lifts_inv_nil: ∀T1,T2. ⇧*[⟠] T1 ≡ T2 → T1 = T2.
39 fact lifts_inv_cons_aux: ∀T1,T2,des. ⇧*[des] T1 ≡ T2 →
40 ∀d,e,tl. des = {d, e} @ tl →
41 ∃∃T. ⇧[d, e] T1 ≡ T & ⇧*[tl] T ≡ T2.
42 #T1 #T2 #des * -T1 -T2 -des
43 [ #T #d #e #tl #H destruct
44 | #T1 #T #T2 #des #d #e #HT1 #HT2 #hd #he #tl #H destruct
48 lemma lifts_inv_cons: ∀T1,T2,d,e,des. ⇧*[{d, e} @ des] T1 ≡ T2 →
49 ∃∃T. ⇧[d, e] T1 ≡ T & ⇧*[des] T ≡ T2.
52 (* Basic_1: was: lift1_sort *)
53 lemma lifts_inv_sort1: ∀T2,k,des. ⇧*[des] ⋆k ≡ T2 → T2 = ⋆k.
54 #T2 #k #des elim des -des
55 [ #H <(lifts_inv_nil … H) -H //
57 elim (lifts_inv_cons … H) -H #X #H
58 >(lift_inv_sort1 … H) -H /2 width=1/
62 (* Basic_1: was: lift1_lref *)
63 lemma lifts_inv_lref1: ∀T2,des,i1. ⇧*[des] #i1 ≡ T2 →
64 ∃∃i2. @⦃i1, des⦄ ≡ i2 & T2 = #i2.
65 #T2 #des elim des -des
66 [ #i1 #H <(lifts_inv_nil … H) -H /2 width=3/
67 | #d #e #des #IH #i1 #H
68 elim (lifts_inv_cons … H) -H #X #H1 #H2
69 elim (lift_inv_lref1 … H1) -H1 * #Hdi1 #H destruct
70 elim (IH … H2) -IH -H2 /3 width=3/
74 lemma lifts_inv_gref1: ∀T2,p,des. ⇧*[des] §p ≡ T2 → T2 = §p.
75 #T2 #p #des elim des -des
76 [ #H <(lifts_inv_nil … H) -H //
78 elim (lifts_inv_cons … H) -H #X #H
79 >(lift_inv_gref1 … H) -H /2 width=1/
83 (* Basic_1: was: lift1_bind *)
84 lemma lifts_inv_bind1: ∀a,I,T2,des,V1,U1. ⇧*[des] ⓑ{a,I} V1. U1 ≡ T2 →
85 ∃∃V2,U2. ⇧*[des] V1 ≡ V2 & ⇧*[des + 1] U1 ≡ U2 &
87 #a #I #T2 #des elim des -des
89 <(lifts_inv_nil … H) -H /2 width=5/
90 | #d #e #des #IHdes #V1 #U1 #H
91 elim (lifts_inv_cons … H) -H #X #H #HT2
92 elim (lift_inv_bind1 … H) -H #V #U #HV1 #HU1 #H destruct
93 elim (IHdes … HT2) -IHdes -HT2 #V2 #U2 #HV2 #HU2 #H destruct
98 (* Basic_1: was: lift1_flat *)
99 lemma lifts_inv_flat1: ∀I,T2,des,V1,U1. ⇧*[des] ⓕ{I} V1. U1 ≡ T2 →
100 ∃∃V2,U2. ⇧*[des] V1 ≡ V2 & ⇧*[des] U1 ≡ U2 &
102 #I #T2 #des elim des -des
104 <(lifts_inv_nil … H) -H /2 width=5/
105 | #d #e #des #IHdes #V1 #U1 #H
106 elim (lifts_inv_cons … H) -H #X #H #HT2
107 elim (lift_inv_flat1 … H) -H #V #U #HV1 #HU1 #H destruct
108 elim (IHdes … HT2) -IHdes -HT2 #V2 #U2 #HV2 #HU2 #H destruct
113 (* Basic forward lemmas *****************************************************)
115 lemma lifts_simple_dx: ∀T1,T2,des. ⇧*[des] T1 ≡ T2 → 𝐒⦃T1⦄ → 𝐒⦃T2⦄.
116 #T1 #T2 #des #H elim H -T1 -T2 -des // /3 width=5 by lift_simple_dx/
119 lemma lifts_simple_sn: ∀T1,T2,des. ⇧*[des] T1 ≡ T2 → 𝐒⦃T2⦄ → 𝐒⦃T1⦄.
120 #T1 #T2 #des #H elim H -T1 -T2 -des // /3 width=5 by lift_simple_sn/
123 (* Basic properties *********************************************************)
125 lemma lifts_bind: ∀a,I,T2,V1,V2,des. ⇧*[des] V1 ≡ V2 →
126 ∀T1. ⇧*[des + 1] T1 ≡ T2 →
127 ⇧*[des] ⓑ{a,I} V1. T1 ≡ ⓑ{a,I} V2. T2.
128 #a #I #T2 #V1 #V2 #des #H elim H -V1 -V2 -des
129 [ #V #T1 #H >(lifts_inv_nil … H) -H //
130 | #V1 #V #V2 #des #d #e #HV1 #_ #IHV #T1 #H
131 elim (lifts_inv_cons … H) -H /3 width=3/
135 lemma lifts_flat: ∀I,T2,V1,V2,des. ⇧*[des] V1 ≡ V2 →
136 ∀T1. ⇧*[des] T1 ≡ T2 →
137 ⇧*[des] ⓕ{I} V1. T1 ≡ ⓕ{I} V2. T2.
138 #I #T2 #V1 #V2 #des #H elim H -V1 -V2 -des
139 [ #V #T1 #H >(lifts_inv_nil … H) -H //
140 | #V1 #V #V2 #des #d #e #HV1 #_ #IHV #T1 #H
141 elim (lifts_inv_cons … H) -H /3 width=3/
145 lemma lifts_total: ∀des,T1. ∃T2. ⇧*[des] T1 ≡ T2.
146 #des elim des -des /2 width=2/
148 elim (lift_total T1 d e) #T #HT1
149 elim (IH T) -IH /3 width=4/