1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was generated by xoa.native: do not edit *********************)
17 include "basics/pts.ma".
19 (* multiple existental quantifier (1, 2) *)
21 inductive ex1_2 (A0,A1:Type[0]) (P0:A0→A1→Prop) : Prop ≝
22 | ex1_2_intro: ∀x0,x1. P0 x0 x1 → ex1_2 ? ? ?
25 interpretation "multiple existental quantifier (1, 2)" 'Ex P0 = (ex1_2 ? ? P0).
27 (* multiple existental quantifier (1, 3) *)
29 inductive ex1_3 (A0,A1,A2:Type[0]) (P0:A0→A1→A2→Prop) : Prop ≝
30 | ex1_3_intro: ∀x0,x1,x2. P0 x0 x1 x2 → ex1_3 ? ? ? ?
33 interpretation "multiple existental quantifier (1, 3)" 'Ex P0 = (ex1_3 ? ? ? P0).
35 (* multiple existental quantifier (2, 1) *)
37 inductive ex2_1 (A0:Type[0]) (P0,P1:A0→Prop) : Prop ≝
38 | ex2_1_intro: ∀x0. P0 x0 → P1 x0 → ex2_1 ? ? ?
41 interpretation "multiple existental quantifier (2, 1)" 'Ex P0 P1 = (ex2_1 ? P0 P1).
43 (* multiple existental quantifier (2, 2) *)
45 inductive ex2_2 (A0,A1:Type[0]) (P0,P1:A0→A1→Prop) : Prop ≝
46 | ex2_2_intro: ∀x0,x1. P0 x0 x1 → P1 x0 x1 → ex2_2 ? ? ? ?
49 interpretation "multiple existental quantifier (2, 2)" 'Ex P0 P1 = (ex2_2 ? ? P0 P1).
51 (* multiple existental quantifier (2, 3) *)
53 inductive ex2_3 (A0,A1,A2:Type[0]) (P0,P1:A0→A1→A2→Prop) : Prop ≝
54 | ex2_3_intro: ∀x0,x1,x2. P0 x0 x1 x2 → P1 x0 x1 x2 → ex2_3 ? ? ? ? ?
57 interpretation "multiple existental quantifier (2, 3)" 'Ex P0 P1 = (ex2_3 ? ? ? P0 P1).
59 (* multiple existental quantifier (3, 1) *)
61 inductive ex3_1 (A0:Type[0]) (P0,P1,P2:A0→Prop) : Prop ≝
62 | ex3_1_intro: ∀x0. P0 x0 → P1 x0 → P2 x0 → ex3_1 ? ? ? ?
65 interpretation "multiple existental quantifier (3, 1)" 'Ex P0 P1 P2 = (ex3_1 ? P0 P1 P2).
67 (* multiple existental quantifier (3, 2) *)
69 inductive ex3_2 (A0,A1:Type[0]) (P0,P1,P2:A0→A1→Prop) : Prop ≝
70 | ex3_2_intro: ∀x0,x1. P0 x0 x1 → P1 x0 x1 → P2 x0 x1 → ex3_2 ? ? ? ? ?
73 interpretation "multiple existental quantifier (3, 2)" 'Ex P0 P1 P2 = (ex3_2 ? ? P0 P1 P2).
75 (* multiple existental quantifier (3, 3) *)
77 inductive ex3_3 (A0,A1,A2:Type[0]) (P0,P1,P2:A0→A1→A2→Prop) : Prop ≝
78 | ex3_3_intro: ∀x0,x1,x2. P0 x0 x1 x2 → P1 x0 x1 x2 → P2 x0 x1 x2 → ex3_3 ? ? ? ? ? ?
81 interpretation "multiple existental quantifier (3, 3)" 'Ex P0 P1 P2 = (ex3_3 ? ? ? P0 P1 P2).
83 (* multiple existental quantifier (3, 4) *)
85 inductive ex3_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2:A0→A1→A2→A3→Prop) : Prop ≝
86 | ex3_4_intro: ∀x0,x1,x2,x3. P0 x0 x1 x2 x3 → P1 x0 x1 x2 x3 → P2 x0 x1 x2 x3 → ex3_4 ? ? ? ? ? ? ?
89 interpretation "multiple existental quantifier (3, 4)" 'Ex P0 P1 P2 = (ex3_4 ? ? ? ? P0 P1 P2).
91 (* multiple existental quantifier (4, 1) *)
93 inductive ex4_1 (A0:Type[0]) (P0,P1,P2,P3:A0→Prop) : Prop ≝
94 | ex4_1_intro: ∀x0. P0 x0 → P1 x0 → P2 x0 → P3 x0 → ex4_1 ? ? ? ? ?
97 interpretation "multiple existental quantifier (4, 1)" 'Ex P0 P1 P2 P3 = (ex4_1 ? P0 P1 P2 P3).
99 (* multiple existental quantifier (4, 2) *)
101 inductive ex4_2 (A0,A1:Type[0]) (P0,P1,P2,P3:A0→A1→Prop) : Prop ≝
102 | ex4_2_intro: ∀x0,x1. P0 x0 x1 → P1 x0 x1 → P2 x0 x1 → P3 x0 x1 → ex4_2 ? ? ? ? ? ?
105 interpretation "multiple existental quantifier (4, 2)" 'Ex P0 P1 P2 P3 = (ex4_2 ? ? P0 P1 P2 P3).
107 (* multiple existental quantifier (4, 3) *)
109 inductive ex4_3 (A0,A1,A2:Type[0]) (P0,P1,P2,P3:A0→A1→A2→Prop) : Prop ≝
110 | ex4_3_intro: ∀x0,x1,x2. P0 x0 x1 x2 → P1 x0 x1 x2 → P2 x0 x1 x2 → P3 x0 x1 x2 → ex4_3 ? ? ? ? ? ? ?
113 interpretation "multiple existental quantifier (4, 3)" 'Ex P0 P1 P2 P3 = (ex4_3 ? ? ? P0 P1 P2 P3).
115 (* multiple existental quantifier (4, 4) *)
117 inductive ex4_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2,P3:A0→A1→A2→A3→Prop) : Prop ≝
118 | ex4_4_intro: ∀x0,x1,x2,x3. P0 x0 x1 x2 x3 → P1 x0 x1 x2 x3 → P2 x0 x1 x2 x3 → P3 x0 x1 x2 x3 → ex4_4 ? ? ? ? ? ? ? ?
121 interpretation "multiple existental quantifier (4, 4)" 'Ex P0 P1 P2 P3 = (ex4_4 ? ? ? ? P0 P1 P2 P3).
123 (* multiple existental quantifier (4, 5) *)
125 inductive ex4_5 (A0,A1,A2,A3,A4:Type[0]) (P0,P1,P2,P3:A0→A1→A2→A3→A4→Prop) : Prop ≝
126 | ex4_5_intro: ∀x0,x1,x2,x3,x4. P0 x0 x1 x2 x3 x4 → P1 x0 x1 x2 x3 x4 → P2 x0 x1 x2 x3 x4 → P3 x0 x1 x2 x3 x4 → ex4_5 ? ? ? ? ? ? ? ? ?
129 interpretation "multiple existental quantifier (4, 5)" 'Ex P0 P1 P2 P3 = (ex4_5 ? ? ? ? ? P0 P1 P2 P3).
131 (* multiple existental quantifier (5, 2) *)
133 inductive ex5_2 (A0,A1:Type[0]) (P0,P1,P2,P3,P4:A0→A1→Prop) : Prop ≝
134 | ex5_2_intro: ∀x0,x1. P0 x0 x1 → P1 x0 x1 → P2 x0 x1 → P3 x0 x1 → P4 x0 x1 → ex5_2 ? ? ? ? ? ? ?
137 interpretation "multiple existental quantifier (5, 2)" 'Ex P0 P1 P2 P3 P4 = (ex5_2 ? ? P0 P1 P2 P3 P4).
139 (* multiple existental quantifier (5, 3) *)
141 inductive ex5_3 (A0,A1,A2:Type[0]) (P0,P1,P2,P3,P4:A0→A1→A2→Prop) : Prop ≝
142 | ex5_3_intro: ∀x0,x1,x2. P0 x0 x1 x2 → P1 x0 x1 x2 → P2 x0 x1 x2 → P3 x0 x1 x2 → P4 x0 x1 x2 → ex5_3 ? ? ? ? ? ? ? ?
145 interpretation "multiple existental quantifier (5, 3)" 'Ex P0 P1 P2 P3 P4 = (ex5_3 ? ? ? P0 P1 P2 P3 P4).
147 (* multiple existental quantifier (5, 4) *)
149 inductive ex5_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2,P3,P4:A0→A1→A2→A3→Prop) : Prop ≝
150 | ex5_4_intro: ∀x0,x1,x2,x3. P0 x0 x1 x2 x3 → P1 x0 x1 x2 x3 → P2 x0 x1 x2 x3 → P3 x0 x1 x2 x3 → P4 x0 x1 x2 x3 → ex5_4 ? ? ? ? ? ? ? ? ?
153 interpretation "multiple existental quantifier (5, 4)" 'Ex P0 P1 P2 P3 P4 = (ex5_4 ? ? ? ? P0 P1 P2 P3 P4).
155 (* multiple existental quantifier (5, 5) *)
157 inductive ex5_5 (A0,A1,A2,A3,A4:Type[0]) (P0,P1,P2,P3,P4:A0→A1→A2→A3→A4→Prop) : Prop ≝
158 | ex5_5_intro: ∀x0,x1,x2,x3,x4. P0 x0 x1 x2 x3 x4 → P1 x0 x1 x2 x3 x4 → P2 x0 x1 x2 x3 x4 → P3 x0 x1 x2 x3 x4 → P4 x0 x1 x2 x3 x4 → ex5_5 ? ? ? ? ? ? ? ? ? ?
161 interpretation "multiple existental quantifier (5, 5)" 'Ex P0 P1 P2 P3 P4 = (ex5_5 ? ? ? ? ? P0 P1 P2 P3 P4).
163 (* multiple existental quantifier (6, 4) *)
165 inductive ex6_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2,P3,P4,P5:A0→A1→A2→A3→Prop) : Prop ≝
166 | ex6_4_intro: ∀x0,x1,x2,x3. P0 x0 x1 x2 x3 → P1 x0 x1 x2 x3 → P2 x0 x1 x2 x3 → P3 x0 x1 x2 x3 → P4 x0 x1 x2 x3 → P5 x0 x1 x2 x3 → ex6_4 ? ? ? ? ? ? ? ? ? ?
169 interpretation "multiple existental quantifier (6, 4)" 'Ex P0 P1 P2 P3 P4 P5 = (ex6_4 ? ? ? ? P0 P1 P2 P3 P4 P5).
171 (* multiple existental quantifier (6, 6) *)
173 inductive ex6_6 (A0,A1,A2,A3,A4,A5:Type[0]) (P0,P1,P2,P3,P4,P5:A0→A1→A2→A3→A4→A5→Prop) : Prop ≝
174 | ex6_6_intro: ∀x0,x1,x2,x3,x4,x5. P0 x0 x1 x2 x3 x4 x5 → P1 x0 x1 x2 x3 x4 x5 → P2 x0 x1 x2 x3 x4 x5 → P3 x0 x1 x2 x3 x4 x5 → P4 x0 x1 x2 x3 x4 x5 → P5 x0 x1 x2 x3 x4 x5 → ex6_6 ? ? ? ? ? ? ? ? ? ? ? ?
177 interpretation "multiple existental quantifier (6, 6)" 'Ex P0 P1 P2 P3 P4 P5 = (ex6_6 ? ? ? ? ? ? P0 P1 P2 P3 P4 P5).
179 (* multiple existental quantifier (6, 7) *)
181 inductive ex6_7 (A0,A1,A2,A3,A4,A5,A6:Type[0]) (P0,P1,P2,P3,P4,P5:A0→A1→A2→A3→A4→A5→A6→Prop) : Prop ≝
182 | ex6_7_intro: ∀x0,x1,x2,x3,x4,x5,x6. P0 x0 x1 x2 x3 x4 x5 x6 → P1 x0 x1 x2 x3 x4 x5 x6 → P2 x0 x1 x2 x3 x4 x5 x6 → P3 x0 x1 x2 x3 x4 x5 x6 → P4 x0 x1 x2 x3 x4 x5 x6 → P5 x0 x1 x2 x3 x4 x5 x6 → ex6_7 ? ? ? ? ? ? ? ? ? ? ? ? ?
185 interpretation "multiple existental quantifier (6, 7)" 'Ex P0 P1 P2 P3 P4 P5 = (ex6_7 ? ? ? ? ? ? ? P0 P1 P2 P3 P4 P5).
187 (* multiple existental quantifier (7, 7) *)
189 inductive ex7_7 (A0,A1,A2,A3,A4,A5,A6:Type[0]) (P0,P1,P2,P3,P4,P5,P6:A0→A1→A2→A3→A4→A5→A6→Prop) : Prop ≝
190 | ex7_7_intro: ∀x0,x1,x2,x3,x4,x5,x6. P0 x0 x1 x2 x3 x4 x5 x6 → P1 x0 x1 x2 x3 x4 x5 x6 → P2 x0 x1 x2 x3 x4 x5 x6 → P3 x0 x1 x2 x3 x4 x5 x6 → P4 x0 x1 x2 x3 x4 x5 x6 → P5 x0 x1 x2 x3 x4 x5 x6 → P6 x0 x1 x2 x3 x4 x5 x6 → ex7_7 ? ? ? ? ? ? ? ? ? ? ? ? ? ?
193 interpretation "multiple existental quantifier (7, 7)" 'Ex P0 P1 P2 P3 P4 P5 P6 = (ex7_7 ? ? ? ? ? ? ? P0 P1 P2 P3 P4 P5 P6).
195 (* multiple disjunction connective (3) *)
197 inductive or3 (P0,P1,P2:Prop) : Prop ≝
198 | or3_intro0: P0 → or3 ? ? ?
199 | or3_intro1: P1 → or3 ? ? ?
200 | or3_intro2: P2 → or3 ? ? ?
203 interpretation "multiple disjunction connective (3)" 'Or P0 P1 P2 = (or3 P0 P1 P2).
205 (* multiple disjunction connective (4) *)
207 inductive or4 (P0,P1,P2,P3:Prop) : Prop ≝
208 | or4_intro0: P0 → or4 ? ? ? ?
209 | or4_intro1: P1 → or4 ? ? ? ?
210 | or4_intro2: P2 → or4 ? ? ? ?
211 | or4_intro3: P3 → or4 ? ? ? ?
214 interpretation "multiple disjunction connective (4)" 'Or P0 P1 P2 P3 = (or4 P0 P1 P2 P3).
216 (* multiple conjunction connective (3) *)
218 inductive and3 (P0,P1,P2:Prop) : Prop ≝
219 | and3_intro: P0 → P1 → P2 → and3 ? ? ?
222 interpretation "multiple conjunction connective (3)" 'And P0 P1 P2 = (and3 P0 P1 P2).
224 (* multiple conjunction connective (4) *)
226 inductive and4 (P0,P1,P2,P3:Prop) : Prop ≝
227 | and4_intro: P0 → P1 → P2 → P3 → and4 ? ? ? ?
230 interpretation "multiple conjunction connective (4)" 'And P0 P1 P2 P3 = (and4 P0 P1 P2 P3).