]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/apps_2/examples/ex_rpx_fwd.ma
update in delayed-updating
[helm.git] / matita / matita / contribs / lambdadelta / apps_2 / examples / ex_rpx_fwd.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "static_2/static/reqg_fqup.ma".
16 include "static_2/static/reqx.ma".
17 include "basic_2/rt_transition/lpx.ma".
18 include "basic_2/rt_transition/rpx.ma".
19
20 (* EXAMPLES *****************************************************************)
21
22 (* Lemma "rpx_fwd_lpx_reqx" is not an inversion *****************************)
23
24 definition L1 (K) (s1) (s0): lenv ≝ K.ⓛ⋆s1.ⓛⓝ#0.⋆s0.
25
26 definition L (K) (s1) (s0): lenv ≝ K.ⓛ⋆s1.ⓛ⋆s0.
27
28 definition L2 (K) (i1) (s0): lenv ≝ K.ⓛ#i1.ⓛ⋆s0.
29
30 definition T: term ≝ #0.
31
32 (* Basic properties *********************************************************)
33
34 lemma ex_rpx_fwd_1 (G) (K) (s1) (s0):
35       ❨G,L1 K s1 s0❩ ⊢ ⬈ L K s1 s0.
36 /3 width=1 by lpx_pair, lpx_bind_refl_dx, cpx_eps/ qed.
37
38 lemma ex_rpx_fwd_2 (K) (s1) (s0) (i1) (i0):
39       L K s1 s0 ≅[T] L2 K i1 i0.
40 /4 width=1 by reqg_refl, reqg_pair, reqg_sort, teqg_sort/ qed.
41
42 lemma ex_rpx_fwd_3 (G) (K) (s1) (s0) (i1) (i0):
43       ❨G,L1 K s1 s0❩ ⊢ ⬈[T] L2 K i1 i0 → ⊥.
44 #G #K #s1 #s0 #i1 #i0 #H
45 elim (rpx_inv_zero_pair_sn … H) -H #Y2 #X2 #H #_ normalize #H0 destruct
46 elim (rpx_inv_flat … H) -H #H #_
47 elim (rpx_inv_zero_pair_sn … H) -H #Y2 #X2 #_ #H #H0 destruct
48 elim (cpx_inv_sort1 … H) #s2 #H destruct
49 qed-.
50
51 (* Main properties **********************************************************)
52
53 theorem ex_rpx_fwd (G) (K) (s1) (s0) (i1) (i0):
54         (❨G,L1 K s1 s0❩ ⊢ ⬈ L K s1 s0 → L K s1 s0 ≅[T] L2 K i1 i0 → ❨G,L1 K s1 s0❩ ⊢ ⬈[T] L2 K i1 i0) → ⊥.
55 /3 width=7 by ex_rpx_fwd_3, ex_rpx_fwd_2, ex_rpx_fwd_1/ qed-.