1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "apps_2/functional/rtm.ma".
17 (* REDUCTION AND TYPE MACHINE ***********************************************)
20 inductive rtm_step: relation rtm ≝
21 | rtm_ldrop : ∀G,u,E,I,t,D,V,S,i.
22 rtm_step (mk_rtm G u (E. ④{I} {t, D, V}) S (#(i + 1)))
24 | rtm_ldelta: ∀G,u,E,t,D,V,S.
25 rtm_step (mk_rtm G u (E. ④{Abbr} {t, D, V}) S (#0))
27 | rtm_ltype : ∀G,u,E,t,D,V,S.
28 rtm_step (mk_rtm G u (E. ④{Abst} {t, D, V}) S (#0))
30 | rtm_gdrop : ∀G,I,V,u,E,S,p. p < |G| →
31 rtm_step (mk_rtm (G. ⓑ{I} V) u E S (§p))
33 | rtm_gdelta: ∀G,V,u,E,S,p. p = |G| →
34 rtm_step (mk_rtm (G. ⓓV) u E S (§p))
36 | rtm_gtype : ∀G,V,u,E,S,p. p = |G| →
37 rtm_step (mk_rtm (G. ⓛV) u E S (§p))
39 | rtm_eps : ∀G,u,E,S,W,T.
40 rtm_step (mk_rtm G u E S (ⓝW. T))
42 | rtm_appl : ∀G,u,E,S,V,T.
43 rtm_step (mk_rtm G u E S (ⓐV. T))
44 (mk_rtm G u E ({E, V} @ S) T)
45 | rtm_beta : ∀G,u,E,D,V,S,W,T.
46 rtm_step (mk_rtm G u E ({D, V} @ S) (+ⓛW. T))
47 (mk_rtm G u (E. ④{Abbr} {u, D, V}) S T)
48 | rtm_push : ∀G,u,E,W,T.
49 rtm_step (mk_rtm G u E (⟠) (+ⓛW. T))
50 (mk_rtm G (u + 1) (E. ④{Abst} {u, E, W}) (⟠) T)
51 | rtm_theta : ∀G,u,E,S,V,T.
52 rtm_step (mk_rtm G u E S (+ⓓV. T))
53 (mk_rtm G u (E. ④{Abbr} {u, E, V}) S T)
56 interpretation "sequential reduction (RTM)"
57 'SRed O1 O2 = (rtm_step O1 O2).