]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/apps_2/models/model.ma
update in delayed-updating
[helm.git] / matita / matita / contribs / lambdadelta / apps_2 / models / model.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground/notation/relations/ringeq_3.ma".
16 include "apps_2/notation/models/at_3.ma".
17 include "apps_2/notation/models/oplus_4.ma".
18 include "apps_2/notation/models/wbrackets_4.ma".
19 include "static_2/syntax/term.ma".
20
21 (* MODEL ********************************************************************)
22
23 record model: Type[1] ≝ {
24 (* Note: denotations domain *)
25    dd: Type[0];
26 (* Note: structural equivalence *)
27    sq: relation2 dd dd;
28 (* Note: sort evaluation *)
29    sv: nat → dd;
30 (* Note: conjunction *)
31    co: bool → dd → dd → dd;
32 (* Note: application *)
33    ap: dd → dd → dd;
34 (* Note: term interperpretation *)
35    ti: (nat → dd) → (nat → dd) → term → dd
36 }.
37
38 interpretation "structural equivalence (model)"
39    'RingEq M d1 d2 = (sq M d1 d2).
40
41 interpretation "application (model)"
42    'At M d1 d2 = (ap M d1 d2).
43
44 interpretation "conjunction (model)"
45    'OPlus M p d1 d2 = (co M p d1 d2).
46
47 interpretation "term interpretation (model)"
48    'WBrackets M gv lv T = (ti M gv lv T).
49
50 definition evaluation: model → Type[0] ≝ λM. nat → dd M.