2 (**************************************************************************)
5 (* ||A|| A project by Andrea Asperti *)
7 (* ||I|| Developers: *)
8 (* ||T|| The HELM team. *)
9 (* ||A|| http://helm.cs.unibo.it *)
11 (* \ / This file is distributed under the terms of the *)
12 (* v GNU General Public License Version 2 *)
14 (**************************************************************************)
16 include "apps_2/models/model_props.ma".
18 (* EVALUATION EQUIVALENCE ***************************************************)
20 definition veq (M): relation (evaluation M) ≝
21 λv1,v2. ∀d. v1 d ≗ v2 d.
23 interpretation "evaluation equivalence (model)"
24 'RingEq M v1 v2 = (veq M v1 v2).
26 (* Basic properties *********************************************************)
28 lemma veq_refl (M): is_model M →
30 /2 width=1 by mr/ qed.
32 lemma veq_repl (M): is_model M →
33 replace_2 … (veq M) (veq M) (veq M).
34 /2 width=5 by mq/ qed-.
36 lemma veq_sym (M): is_model M → symmetric … (veq M).
37 /3 width=5 by veq_repl, veq_refl/ qed-.
39 lemma veq_trans (M): is_model M → Transitive … (veq M).
40 /3 width=5 by veq_repl, veq_refl/ qed-.
42 lemma veq_canc_sn (M): is_model M → left_cancellable … (veq M).
43 /3 width=3 by veq_trans, veq_sym/ qed-.
45 lemma veq_canc_dx (M): is_model M → right_cancellable … (veq M).
46 /3 width=3 by veq_trans, veq_sym/ qed-.
48 (* Properties with evaluation push ******************************************)
50 theorem vpush_swap (M): is_model M →
52 ∀lv,d1,d2. ⫯[i1←d1] ⫯[i2←d2] lv ≗{M} ⫯[↑i2←d2] ⫯[i1←d1] lv.
53 #M #HM #i1 #i2 #Hi12 #lv #d1 #d2 #j
54 elim (lt_or_eq_or_gt j i1) #Hji1 destruct
55 [ lapply (lt_to_le_to_lt … Hji1 Hi12) #Hji2
56 >vpush_lt // >vpush_lt // >vpush_lt /2 width=1 by lt_S/ >vpush_lt //
57 /2 width=1 by veq_refl/
58 | >vpush_eq >vpush_lt /2 width=1 by monotonic_le_plus_l/ >vpush_eq
60 | >vpush_gt // elim (lt_or_eq_or_gt (↓j) i2) #Hji2 destruct
61 [ >vpush_lt // >vpush_lt /2 width=1 by lt_minus_to_plus/ >vpush_gt //
62 /2 width=1 by veq_refl/
63 | >vpush_eq <(lt_succ_pred … Hji1) >vpush_eq
65 | lapply (le_to_lt_to_lt … Hi12 Hji2) #Hi1j
66 >vpush_gt // >vpush_gt /2 width=1 by lt_minus_to_plus_r/ >vpush_gt //
67 /2 width=1 by veq_refl/
72 lemma vpush_comp (M): is_model M →
73 ∀i. compatible_3 … (vpush M i) (sq M) (veq M) (veq M).
74 #M #HM #i #d1 #d2 #Hd12 #lv1 #lv2 #HLv12 #j
75 elim (lt_or_eq_or_gt j i) #Hij destruct
76 [ >vpush_lt // >vpush_lt //
77 | >vpush_eq >vpush_eq //
78 | >vpush_gt // >vpush_gt //
82 (* Properies with term interpretation ***************************************)
84 lemma ti_comp (M): is_model M →
85 ∀T,gv1,gv2. gv1 ≗ gv2 → ∀lv1,lv2. lv1 ≗ lv2 →
86 ⟦T⟧[gv1, lv1] ≗{M} ⟦T⟧[gv2, lv2].
87 #M #HM #T elim T -T * [||| #p * | * ]
88 [ /4 width=5 by seq_trans, seq_sym, ms/
89 | /4 width=5 by seq_sym, ml, mq/
90 | /4 width=3 by seq_trans, seq_sym, mg/
91 | /6 width=5 by vpush_comp, seq_sym, md, mc, mq/
92 | /5 width=1 by vpush_comp, mi, mr/
93 | /4 width=5 by seq_sym, ma, mp, mq/
94 | /4 width=5 by seq_sym, me, mq/