1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 include "basic_1/arity/fwd.ma".
20 \forall (g: G).(\forall (n: nat).(\forall (k: nat).(ex_2 C T (\lambda (c:
21 C).(\lambda (t: T).(arity g c t (ASort k n)))))))
23 \lambda (g: G).(\lambda (n: nat).(\lambda (k: nat).(nat_ind (\lambda (n0:
24 nat).(ex_2 C T (\lambda (c: C).(\lambda (t: T).(arity g c t (ASort n0 n))))))
25 (ex_2_intro C T (\lambda (c: C).(\lambda (t: T).(arity g c t (ASort O n))))
26 (CSort O) (TSort n) (arity_sort g (CSort O) n)) (\lambda (n0: nat).(\lambda
27 (H: (ex_2 C T (\lambda (c: C).(\lambda (t: T).(arity g c t (ASort n0
28 n)))))).(let H0 \def H in (ex_2_ind C T (\lambda (c: C).(\lambda (t:
29 T).(arity g c t (ASort n0 n)))) (ex_2 C T (\lambda (c: C).(\lambda (t:
30 T).(arity g c t (ASort (S n0) n))))) (\lambda (x0: C).(\lambda (x1:
31 T).(\lambda (H1: (arity g x0 x1 (ASort n0 n))).(ex_2_intro C T (\lambda (c:
32 C).(\lambda (t: T).(arity g c t (ASort (S n0) n)))) (CHead x0 (Bind Abst) x1)
33 (TLRef O) (arity_abst g (CHead x0 (Bind Abst) x1) x0 x1 O (getl_refl Abst x0
34 x1) (ASort (S n0) n) H1))))) H0)))) k))).
37 \forall (g: G).(\forall (c2: C).(\forall (t: T).(\forall (a: A).((arity g c2
38 t a) \to (\forall (c1: C).(\forall (h: nat).(\forall (d: nat).((drop h d c1
39 c2) \to (arity g c1 (lift h d t) a)))))))))
41 \lambda (g: G).(\lambda (c2: C).(\lambda (t: T).(\lambda (a: A).(\lambda (H:
42 (arity g c2 t a)).(arity_ind g (\lambda (c: C).(\lambda (t0: T).(\lambda (a0:
43 A).(\forall (c1: C).(\forall (h: nat).(\forall (d: nat).((drop h d c1 c) \to
44 (arity g c1 (lift h d t0) a0)))))))) (\lambda (c: C).(\lambda (n:
45 nat).(\lambda (c1: C).(\lambda (h: nat).(\lambda (d: nat).(\lambda (_: (drop
46 h d c1 c)).(eq_ind_r T (TSort n) (\lambda (t0: T).(arity g c1 t0 (ASort O
47 n))) (arity_sort g c1 n) (lift h d (TSort n)) (lift_sort n h d))))))))
48 (\lambda (c: C).(\lambda (d: C).(\lambda (u: T).(\lambda (i: nat).(\lambda
49 (H0: (getl i c (CHead d (Bind Abbr) u))).(\lambda (a0: A).(\lambda (H1:
50 (arity g d u a0)).(\lambda (H2: ((\forall (c1: C).(\forall (h: nat).(\forall
51 (d0: nat).((drop h d0 c1 d) \to (arity g c1 (lift h d0 u) a0))))))).(\lambda
52 (c1: C).(\lambda (h: nat).(\lambda (d0: nat).(\lambda (H3: (drop h d0 c1
53 c)).(lt_le_e i d0 (arity g c1 (lift h d0 (TLRef i)) a0) (\lambda (H4: (lt i
54 d0)).(eq_ind_r T (TLRef i) (\lambda (t0: T).(arity g c1 t0 a0)) (let H5 \def
55 (drop_getl_trans_le i d0 (le_S_n i d0 (le_S_n (S i) (S d0) (le_S (S (S i)) (S
56 d0) (le_n_S (S i) d0 H4)))) c1 c h H3 (CHead d (Bind Abbr) u) H0) in
57 (ex3_2_ind C C (\lambda (e0: C).(\lambda (_: C).(drop i O c1 e0))) (\lambda
58 (e0: C).(\lambda (e1: C).(drop h (minus d0 i) e0 e1))) (\lambda (_:
59 C).(\lambda (e1: C).(clear e1 (CHead d (Bind Abbr) u)))) (arity g c1 (TLRef
60 i) a0) (\lambda (x0: C).(\lambda (x1: C).(\lambda (H6: (drop i O c1
61 x0)).(\lambda (H7: (drop h (minus d0 i) x0 x1)).(\lambda (H8: (clear x1
62 (CHead d (Bind Abbr) u))).(let H9 \def (eq_ind nat (minus d0 i) (\lambda (n:
63 nat).(drop h n x0 x1)) H7 (S (minus d0 (S i))) (minus_x_Sy d0 i H4)) in (let
64 H10 \def (drop_clear_S x1 x0 h (minus d0 (S i)) H9 Abbr d u H8) in (ex2_ind C
65 (\lambda (c3: C).(clear x0 (CHead c3 (Bind Abbr) (lift h (minus d0 (S i))
66 u)))) (\lambda (c3: C).(drop h (minus d0 (S i)) c3 d)) (arity g c1 (TLRef i)
67 a0) (\lambda (x: C).(\lambda (H11: (clear x0 (CHead x (Bind Abbr) (lift h
68 (minus d0 (S i)) u)))).(\lambda (H12: (drop h (minus d0 (S i)) x
69 d)).(arity_abbr g c1 x (lift h (minus d0 (S i)) u) i (getl_intro i c1 (CHead
70 x (Bind Abbr) (lift h (minus d0 (S i)) u)) x0 H6 H11) a0 (H2 x h (minus d0 (S
71 i)) H12))))) H10)))))))) H5)) (lift h d0 (TLRef i)) (lift_lref_lt i h d0
72 H4))) (\lambda (H4: (le d0 i)).(eq_ind_r T (TLRef (plus i h)) (\lambda (t0:
73 T).(arity g c1 t0 a0)) (arity_abbr g c1 d u (plus i h) (drop_getl_trans_ge i
74 c1 c d0 h H3 (CHead d (Bind Abbr) u) H0 H4) a0 H1) (lift h d0 (TLRef i))
75 (lift_lref_ge i h d0 H4)))))))))))))))) (\lambda (c: C).(\lambda (d:
76 C).(\lambda (u: T).(\lambda (i: nat).(\lambda (H0: (getl i c (CHead d (Bind
77 Abst) u))).(\lambda (a0: A).(\lambda (H1: (arity g d u (asucc g
78 a0))).(\lambda (H2: ((\forall (c1: C).(\forall (h: nat).(\forall (d0:
79 nat).((drop h d0 c1 d) \to (arity g c1 (lift h d0 u) (asucc g
80 a0)))))))).(\lambda (c1: C).(\lambda (h: nat).(\lambda (d0: nat).(\lambda
81 (H3: (drop h d0 c1 c)).(lt_le_e i d0 (arity g c1 (lift h d0 (TLRef i)) a0)
82 (\lambda (H4: (lt i d0)).(eq_ind_r T (TLRef i) (\lambda (t0: T).(arity g c1
83 t0 a0)) (let H5 \def (drop_getl_trans_le i d0 (le_S_n i d0 (le_S_n (S i) (S
84 d0) (le_S (S (S i)) (S d0) (le_n_S (S i) d0 H4)))) c1 c h H3 (CHead d (Bind
85 Abst) u) H0) in (ex3_2_ind C C (\lambda (e0: C).(\lambda (_: C).(drop i O c1
86 e0))) (\lambda (e0: C).(\lambda (e1: C).(drop h (minus d0 i) e0 e1)))
87 (\lambda (_: C).(\lambda (e1: C).(clear e1 (CHead d (Bind Abst) u)))) (arity
88 g c1 (TLRef i) a0) (\lambda (x0: C).(\lambda (x1: C).(\lambda (H6: (drop i O
89 c1 x0)).(\lambda (H7: (drop h (minus d0 i) x0 x1)).(\lambda (H8: (clear x1
90 (CHead d (Bind Abst) u))).(let H9 \def (eq_ind nat (minus d0 i) (\lambda (n:
91 nat).(drop h n x0 x1)) H7 (S (minus d0 (S i))) (minus_x_Sy d0 i H4)) in (let
92 H10 \def (drop_clear_S x1 x0 h (minus d0 (S i)) H9 Abst d u H8) in (ex2_ind C
93 (\lambda (c3: C).(clear x0 (CHead c3 (Bind Abst) (lift h (minus d0 (S i))
94 u)))) (\lambda (c3: C).(drop h (minus d0 (S i)) c3 d)) (arity g c1 (TLRef i)
95 a0) (\lambda (x: C).(\lambda (H11: (clear x0 (CHead x (Bind Abst) (lift h
96 (minus d0 (S i)) u)))).(\lambda (H12: (drop h (minus d0 (S i)) x
97 d)).(arity_abst g c1 x (lift h (minus d0 (S i)) u) i (getl_intro i c1 (CHead
98 x (Bind Abst) (lift h (minus d0 (S i)) u)) x0 H6 H11) a0 (H2 x h (minus d0 (S
99 i)) H12))))) H10)))))))) H5)) (lift h d0 (TLRef i)) (lift_lref_lt i h d0
100 H4))) (\lambda (H4: (le d0 i)).(eq_ind_r T (TLRef (plus i h)) (\lambda (t0:
101 T).(arity g c1 t0 a0)) (arity_abst g c1 d u (plus i h) (drop_getl_trans_ge i
102 c1 c d0 h H3 (CHead d (Bind Abst) u) H0 H4) a0 H1) (lift h d0 (TLRef i))
103 (lift_lref_ge i h d0 H4)))))))))))))))) (\lambda (b: B).(\lambda (H0: (not
104 (eq B b Abst))).(\lambda (c: C).(\lambda (u: T).(\lambda (a1: A).(\lambda (_:
105 (arity g c u a1)).(\lambda (H2: ((\forall (c1: C).(\forall (h: nat).(\forall
106 (d: nat).((drop h d c1 c) \to (arity g c1 (lift h d u) a1))))))).(\lambda
107 (t0: T).(\lambda (a2: A).(\lambda (_: (arity g (CHead c (Bind b) u) t0
108 a2)).(\lambda (H4: ((\forall (c1: C).(\forall (h: nat).(\forall (d:
109 nat).((drop h d c1 (CHead c (Bind b) u)) \to (arity g c1 (lift h d t0)
110 a2))))))).(\lambda (c1: C).(\lambda (h: nat).(\lambda (d: nat).(\lambda (H5:
111 (drop h d c1 c)).(eq_ind_r T (THead (Bind b) (lift h d u) (lift h (s (Bind b)
112 d) t0)) (\lambda (t1: T).(arity g c1 t1 a2)) (arity_bind g b H0 c1 (lift h d
113 u) a1 (H2 c1 h d H5) (lift h (s (Bind b) d) t0) a2 (H4 (CHead c1 (Bind b)
114 (lift h d u)) h (s (Bind b) d) (drop_skip_bind h d c1 c H5 b u))) (lift h d
115 (THead (Bind b) u t0)) (lift_head (Bind b) u t0 h d))))))))))))))))) (\lambda
116 (c: C).(\lambda (u: T).(\lambda (a1: A).(\lambda (_: (arity g c u (asucc g
117 a1))).(\lambda (H1: ((\forall (c1: C).(\forall (h: nat).(\forall (d:
118 nat).((drop h d c1 c) \to (arity g c1 (lift h d u) (asucc g
119 a1)))))))).(\lambda (t0: T).(\lambda (a2: A).(\lambda (_: (arity g (CHead c
120 (Bind Abst) u) t0 a2)).(\lambda (H3: ((\forall (c1: C).(\forall (h:
121 nat).(\forall (d: nat).((drop h d c1 (CHead c (Bind Abst) u)) \to (arity g c1
122 (lift h d t0) a2))))))).(\lambda (c1: C).(\lambda (h: nat).(\lambda (d:
123 nat).(\lambda (H4: (drop h d c1 c)).(eq_ind_r T (THead (Bind Abst) (lift h d
124 u) (lift h (s (Bind Abst) d) t0)) (\lambda (t1: T).(arity g c1 t1 (AHead a1
125 a2))) (arity_head g c1 (lift h d u) a1 (H1 c1 h d H4) (lift h (s (Bind Abst)
126 d) t0) a2 (H3 (CHead c1 (Bind Abst) (lift h d u)) h (s (Bind Abst) d)
127 (drop_skip_bind h d c1 c H4 Abst u))) (lift h d (THead (Bind Abst) u t0))
128 (lift_head (Bind Abst) u t0 h d))))))))))))))) (\lambda (c: C).(\lambda (u:
129 T).(\lambda (a1: A).(\lambda (_: (arity g c u a1)).(\lambda (H1: ((\forall
130 (c1: C).(\forall (h: nat).(\forall (d: nat).((drop h d c1 c) \to (arity g c1
131 (lift h d u) a1))))))).(\lambda (t0: T).(\lambda (a2: A).(\lambda (_: (arity
132 g c t0 (AHead a1 a2))).(\lambda (H3: ((\forall (c1: C).(\forall (h:
133 nat).(\forall (d: nat).((drop h d c1 c) \to (arity g c1 (lift h d t0) (AHead
134 a1 a2)))))))).(\lambda (c1: C).(\lambda (h: nat).(\lambda (d: nat).(\lambda
135 (H4: (drop h d c1 c)).(eq_ind_r T (THead (Flat Appl) (lift h d u) (lift h (s
136 (Flat Appl) d) t0)) (\lambda (t1: T).(arity g c1 t1 a2)) (arity_appl g c1
137 (lift h d u) a1 (H1 c1 h d H4) (lift h (s (Flat Appl) d) t0) a2 (H3 c1 h (s
138 (Flat Appl) d) H4)) (lift h d (THead (Flat Appl) u t0)) (lift_head (Flat
139 Appl) u t0 h d))))))))))))))) (\lambda (c: C).(\lambda (u: T).(\lambda (a0:
140 A).(\lambda (_: (arity g c u (asucc g a0))).(\lambda (H1: ((\forall (c1:
141 C).(\forall (h: nat).(\forall (d: nat).((drop h d c1 c) \to (arity g c1 (lift
142 h d u) (asucc g a0)))))))).(\lambda (t0: T).(\lambda (_: (arity g c t0
143 a0)).(\lambda (H3: ((\forall (c1: C).(\forall (h: nat).(\forall (d:
144 nat).((drop h d c1 c) \to (arity g c1 (lift h d t0) a0))))))).(\lambda (c1:
145 C).(\lambda (h: nat).(\lambda (d: nat).(\lambda (H4: (drop h d c1
146 c)).(eq_ind_r T (THead (Flat Cast) (lift h d u) (lift h (s (Flat Cast) d)
147 t0)) (\lambda (t1: T).(arity g c1 t1 a0)) (arity_cast g c1 (lift h d u) a0
148 (H1 c1 h d H4) (lift h (s (Flat Cast) d) t0) (H3 c1 h (s (Flat Cast) d) H4))
149 (lift h d (THead (Flat Cast) u t0)) (lift_head (Flat Cast) u t0 h
150 d)))))))))))))) (\lambda (c: C).(\lambda (t0: T).(\lambda (a1: A).(\lambda
151 (_: (arity g c t0 a1)).(\lambda (H1: ((\forall (c1: C).(\forall (h:
152 nat).(\forall (d: nat).((drop h d c1 c) \to (arity g c1 (lift h d t0)
153 a1))))))).(\lambda (a2: A).(\lambda (H2: (leq g a1 a2)).(\lambda (c1:
154 C).(\lambda (h: nat).(\lambda (d: nat).(\lambda (H3: (drop h d c1
155 c)).(arity_repl g c1 (lift h d t0) a1 (H1 c1 h d H3) a2 H2)))))))))))) c2 t a
158 lemma arity_repellent:
159 \forall (g: G).(\forall (c: C).(\forall (w: T).(\forall (t: T).(\forall (a1:
160 A).((arity g (CHead c (Bind Abst) w) t a1) \to (\forall (a2: A).((arity g c
161 (THead (Bind Abst) w t) a2) \to ((leq g a1 a2) \to (\forall (P:
164 \lambda (g: G).(\lambda (c: C).(\lambda (w: T).(\lambda (t: T).(\lambda (a1:
165 A).(\lambda (H: (arity g (CHead c (Bind Abst) w) t a1)).(\lambda (a2:
166 A).(\lambda (H0: (arity g c (THead (Bind Abst) w t) a2)).(\lambda (H1: (leq g
167 a1 a2)).(\lambda (P: Prop).(let H_y \def (arity_repl g (CHead c (Bind Abst)
168 w) t a1 H a2 H1) in (let H2 \def (arity_gen_abst g c w t a2 H0) in (ex3_2_ind
169 A A (\lambda (a3: A).(\lambda (a4: A).(eq A a2 (AHead a3 a4)))) (\lambda (a3:
170 A).(\lambda (_: A).(arity g c w (asucc g a3)))) (\lambda (_: A).(\lambda (a4:
171 A).(arity g (CHead c (Bind Abst) w) t a4))) P (\lambda (x0: A).(\lambda (x1:
172 A).(\lambda (H3: (eq A a2 (AHead x0 x1))).(\lambda (_: (arity g c w (asucc g
173 x0))).(\lambda (H5: (arity g (CHead c (Bind Abst) w) t x1)).(let H6 \def
174 (eq_ind A a2 (\lambda (a: A).(arity g (CHead c (Bind Abst) w) t a)) H_y
175 (AHead x0 x1) H3) in (leq_ahead_false_2 g x1 x0 (arity_mono g (CHead c (Bind
176 Abst) w) t (AHead x0 x1) H6 x1 H5) P))))))) H2)))))))))))).
178 theorem arity_appls_cast:
179 \forall (g: G).(\forall (c: C).(\forall (u: T).(\forall (t: T).(\forall (vs:
180 TList).(\forall (a: A).((arity g c (THeads (Flat Appl) vs u) (asucc g a)) \to
181 ((arity g c (THeads (Flat Appl) vs t) a) \to (arity g c (THeads (Flat Appl)
182 vs (THead (Flat Cast) u t)) a))))))))
184 \lambda (g: G).(\lambda (c: C).(\lambda (u: T).(\lambda (t: T).(\lambda (vs:
185 TList).(TList_ind (\lambda (t0: TList).(\forall (a: A).((arity g c (THeads
186 (Flat Appl) t0 u) (asucc g a)) \to ((arity g c (THeads (Flat Appl) t0 t) a)
187 \to (arity g c (THeads (Flat Appl) t0 (THead (Flat Cast) u t)) a)))))
188 (\lambda (a: A).(\lambda (H: (arity g c u (asucc g a))).(\lambda (H0: (arity
189 g c t a)).(arity_cast g c u a H t H0)))) (\lambda (t0: T).(\lambda (t1:
190 TList).(\lambda (H: ((\forall (a: A).((arity g c (THeads (Flat Appl) t1 u)
191 (asucc g a)) \to ((arity g c (THeads (Flat Appl) t1 t) a) \to (arity g c
192 (THeads (Flat Appl) t1 (THead (Flat Cast) u t)) a)))))).(\lambda (a:
193 A).(\lambda (H0: (arity g c (THead (Flat Appl) t0 (THeads (Flat Appl) t1 u))
194 (asucc g a))).(\lambda (H1: (arity g c (THead (Flat Appl) t0 (THeads (Flat
195 Appl) t1 t)) a)).(let H2 \def (arity_gen_appl g c t0 (THeads (Flat Appl) t1
196 t) a H1) in (ex2_ind A (\lambda (a1: A).(arity g c t0 a1)) (\lambda (a1:
197 A).(arity g c (THeads (Flat Appl) t1 t) (AHead a1 a))) (arity g c (THead
198 (Flat Appl) t0 (THeads (Flat Appl) t1 (THead (Flat Cast) u t))) a) (\lambda
199 (x: A).(\lambda (H3: (arity g c t0 x)).(\lambda (H4: (arity g c (THeads (Flat
200 Appl) t1 t) (AHead x a))).(let H5 \def (arity_gen_appl g c t0 (THeads (Flat
201 Appl) t1 u) (asucc g a) H0) in (ex2_ind A (\lambda (a1: A).(arity g c t0 a1))
202 (\lambda (a1: A).(arity g c (THeads (Flat Appl) t1 u) (AHead a1 (asucc g
203 a)))) (arity g c (THead (Flat Appl) t0 (THeads (Flat Appl) t1 (THead (Flat
204 Cast) u t))) a) (\lambda (x0: A).(\lambda (H6: (arity g c t0 x0)).(\lambda
205 (H7: (arity g c (THeads (Flat Appl) t1 u) (AHead x0 (asucc g
206 a)))).(arity_appl g c t0 x H3 (THeads (Flat Appl) t1 (THead (Flat Cast) u t))
207 a (H (AHead x a) (arity_repl g c (THeads (Flat Appl) t1 u) (AHead x (asucc g
208 a)) (arity_repl g c (THeads (Flat Appl) t1 u) (AHead x0 (asucc g a)) H7
209 (AHead x (asucc g a)) (leq_head g x0 x (arity_mono g c t0 x0 H6 x H3) (asucc
210 g a) (asucc g a) (leq_refl g (asucc g a)))) (asucc g (AHead x a)) (leq_refl g
211 (asucc g (AHead x a)))) H4))))) H5))))) H2)))))))) vs))))).
213 lemma arity_appls_abbr:
214 \forall (g: G).(\forall (c: C).(\forall (d: C).(\forall (v: T).(\forall (i:
215 nat).((getl i c (CHead d (Bind Abbr) v)) \to (\forall (vs: TList).(\forall
216 (a: A).((arity g c (THeads (Flat Appl) vs (lift (S i) O v)) a) \to (arity g c
217 (THeads (Flat Appl) vs (TLRef i)) a)))))))))
219 \lambda (g: G).(\lambda (c: C).(\lambda (d: C).(\lambda (v: T).(\lambda (i:
220 nat).(\lambda (H: (getl i c (CHead d (Bind Abbr) v))).(\lambda (vs:
221 TList).(TList_ind (\lambda (t: TList).(\forall (a: A).((arity g c (THeads
222 (Flat Appl) t (lift (S i) O v)) a) \to (arity g c (THeads (Flat Appl) t
223 (TLRef i)) a)))) (\lambda (a: A).(\lambda (H0: (arity g c (lift (S i) O v)
224 a)).(arity_abbr g c d v i H a (arity_gen_lift g c v a (S i) O H0 d (getl_drop
225 Abbr c d v i H))))) (\lambda (t: T).(\lambda (t0: TList).(\lambda (H0:
226 ((\forall (a: A).((arity g c (THeads (Flat Appl) t0 (lift (S i) O v)) a) \to
227 (arity g c (THeads (Flat Appl) t0 (TLRef i)) a))))).(\lambda (a: A).(\lambda
228 (H1: (arity g c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O
229 v))) a)).(let H2 \def (arity_gen_appl g c t (THeads (Flat Appl) t0 (lift (S
230 i) O v)) a H1) in (ex2_ind A (\lambda (a1: A).(arity g c t a1)) (\lambda (a1:
231 A).(arity g c (THeads (Flat Appl) t0 (lift (S i) O v)) (AHead a1 a))) (arity
232 g c (THead (Flat Appl) t (THeads (Flat Appl) t0 (TLRef i))) a) (\lambda (x:
233 A).(\lambda (H3: (arity g c t x)).(\lambda (H4: (arity g c (THeads (Flat
234 Appl) t0 (lift (S i) O v)) (AHead x a))).(arity_appl g c t x H3 (THeads (Flat
235 Appl) t0 (TLRef i)) a (H0 (AHead x a) H4))))) H2))))))) vs))))))).
237 theorem arity_appls_bind:
238 \forall (g: G).(\forall (b: B).((not (eq B b Abst)) \to (\forall (c:
239 C).(\forall (v: T).(\forall (a1: A).((arity g c v a1) \to (\forall (t:
240 T).(\forall (vs: TList).(\forall (a2: A).((arity g (CHead c (Bind b) v)
241 (THeads (Flat Appl) (lifts (S O) O vs) t) a2) \to (arity g c (THeads (Flat
242 Appl) vs (THead (Bind b) v t)) a2)))))))))))
244 \lambda (g: G).(\lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda
245 (c: C).(\lambda (v: T).(\lambda (a1: A).(\lambda (H0: (arity g c v
246 a1)).(\lambda (t: T).(\lambda (vs: TList).(TList_ind (\lambda (t0:
247 TList).(\forall (a2: A).((arity g (CHead c (Bind b) v) (THeads (Flat Appl)
248 (lifts (S O) O t0) t) a2) \to (arity g c (THeads (Flat Appl) t0 (THead (Bind
249 b) v t)) a2)))) (\lambda (a2: A).(\lambda (H1: (arity g (CHead c (Bind b) v)
250 t a2)).(arity_bind g b H c v a1 H0 t a2 H1))) (\lambda (t0: T).(\lambda (t1:
251 TList).(\lambda (H1: ((\forall (a2: A).((arity g (CHead c (Bind b) v) (THeads
252 (Flat Appl) (lifts (S O) O t1) t) a2) \to (arity g c (THeads (Flat Appl) t1
253 (THead (Bind b) v t)) a2))))).(\lambda (a2: A).(\lambda (H2: (arity g (CHead
254 c (Bind b) v) (THead (Flat Appl) (lift (S O) O t0) (THeads (Flat Appl) (lifts
255 (S O) O t1) t)) a2)).(let H3 \def (arity_gen_appl g (CHead c (Bind b) v)
256 (lift (S O) O t0) (THeads (Flat Appl) (lifts (S O) O t1) t) a2 H2) in
257 (ex2_ind A (\lambda (a3: A).(arity g (CHead c (Bind b) v) (lift (S O) O t0)
258 a3)) (\lambda (a3: A).(arity g (CHead c (Bind b) v) (THeads (Flat Appl)
259 (lifts (S O) O t1) t) (AHead a3 a2))) (arity g c (THead (Flat Appl) t0
260 (THeads (Flat Appl) t1 (THead (Bind b) v t))) a2) (\lambda (x: A).(\lambda
261 (H4: (arity g (CHead c (Bind b) v) (lift (S O) O t0) x)).(\lambda (H5: (arity
262 g (CHead c (Bind b) v) (THeads (Flat Appl) (lifts (S O) O t1) t) (AHead x
263 a2))).(arity_appl g c t0 x (arity_gen_lift g (CHead c (Bind b) v) t0 x (S O)
264 O H4 c (drop_drop (Bind b) O c c (drop_refl c) v)) (THeads (Flat Appl) t1
265 (THead (Bind b) v t)) a2 (H1 (AHead x a2) H5))))) H3))))))) vs))))))))).