1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 include "basic_1/csubc/drop.ma".
19 lemma drop1_csubc_trans:
20 \forall (g: G).(\forall (hds: PList).(\forall (c2: C).(\forall (e2:
21 C).((drop1 hds c2 e2) \to (\forall (e1: C).((csubc g e2 e1) \to (ex2 C
22 (\lambda (c1: C).(drop1 hds c1 e1)) (\lambda (c1: C).(csubc g c2 c1)))))))))
24 \lambda (g: G).(\lambda (hds: PList).(PList_ind (\lambda (p: PList).(\forall
25 (c2: C).(\forall (e2: C).((drop1 p c2 e2) \to (\forall (e1: C).((csubc g e2
26 e1) \to (ex2 C (\lambda (c1: C).(drop1 p c1 e1)) (\lambda (c1: C).(csubc g c2
27 c1))))))))) (\lambda (c2: C).(\lambda (e2: C).(\lambda (H: (drop1 PNil c2
28 e2)).(\lambda (e1: C).(\lambda (H0: (csubc g e2 e1)).(let H_y \def
29 (drop1_gen_pnil c2 e2 H) in (let H1 \def (eq_ind_r C e2 (\lambda (c:
30 C).(csubc g c e1)) H0 c2 H_y) in (ex_intro2 C (\lambda (c1: C).(drop1 PNil c1
31 e1)) (\lambda (c1: C).(csubc g c2 c1)) e1 (drop1_nil e1) H1)))))))) (\lambda
32 (n: nat).(\lambda (n0: nat).(\lambda (p: PList).(\lambda (H: ((\forall (c2:
33 C).(\forall (e2: C).((drop1 p c2 e2) \to (\forall (e1: C).((csubc g e2 e1)
34 \to (ex2 C (\lambda (c1: C).(drop1 p c1 e1)) (\lambda (c1: C).(csubc g c2
35 c1)))))))))).(\lambda (c2: C).(\lambda (e2: C).(\lambda (H0: (drop1 (PCons n
36 n0 p) c2 e2)).(\lambda (e1: C).(\lambda (H1: (csubc g e2 e1)).(let H_x \def
37 (drop1_gen_pcons c2 e2 p n n0 H0) in (let H2 \def H_x in (ex2_ind C (\lambda
38 (c3: C).(drop n n0 c2 c3)) (\lambda (c3: C).(drop1 p c3 e2)) (ex2 C (\lambda
39 (c1: C).(drop1 (PCons n n0 p) c1 e1)) (\lambda (c1: C).(csubc g c2 c1)))
40 (\lambda (x: C).(\lambda (H3: (drop n n0 c2 x)).(\lambda (H4: (drop1 p x
41 e2)).(let H_x0 \def (H x e2 H4 e1 H1) in (let H5 \def H_x0 in (ex2_ind C
42 (\lambda (c1: C).(drop1 p c1 e1)) (\lambda (c1: C).(csubc g x c1)) (ex2 C
43 (\lambda (c1: C).(drop1 (PCons n n0 p) c1 e1)) (\lambda (c1: C).(csubc g c2
44 c1))) (\lambda (x0: C).(\lambda (H6: (drop1 p x0 e1)).(\lambda (H7: (csubc g
45 x x0)).(let H_x1 \def (drop_csubc_trans g c2 x n0 n H3 x0 H7) in (let H8 \def
46 H_x1 in (ex2_ind C (\lambda (c1: C).(drop n n0 c1 x0)) (\lambda (c1:
47 C).(csubc g c2 c1)) (ex2 C (\lambda (c1: C).(drop1 (PCons n n0 p) c1 e1))
48 (\lambda (c1: C).(csubc g c2 c1))) (\lambda (x1: C).(\lambda (H9: (drop n n0
49 x1 x0)).(\lambda (H10: (csubc g c2 x1)).(ex_intro2 C (\lambda (c1: C).(drop1
50 (PCons n n0 p) c1 e1)) (\lambda (c1: C).(csubc g c2 c1)) x1 (drop1_cons x1 x0
51 n n0 H9 e1 p H6) H10)))) H8)))))) H5)))))) H2)))))))))))) hds)).
53 lemma csubc_drop1_conf_rev:
54 \forall (g: G).(\forall (hds: PList).(\forall (c2: C).(\forall (e2:
55 C).((drop1 hds c2 e2) \to (\forall (e1: C).((csubc g e1 e2) \to (ex2 C
56 (\lambda (c1: C).(drop1 hds c1 e1)) (\lambda (c1: C).(csubc g c1 c2)))))))))
58 \lambda (g: G).(\lambda (hds: PList).(PList_ind (\lambda (p: PList).(\forall
59 (c2: C).(\forall (e2: C).((drop1 p c2 e2) \to (\forall (e1: C).((csubc g e1
60 e2) \to (ex2 C (\lambda (c1: C).(drop1 p c1 e1)) (\lambda (c1: C).(csubc g c1
61 c2))))))))) (\lambda (c2: C).(\lambda (e2: C).(\lambda (H: (drop1 PNil c2
62 e2)).(\lambda (e1: C).(\lambda (H0: (csubc g e1 e2)).(let H_y \def
63 (drop1_gen_pnil c2 e2 H) in (let H1 \def (eq_ind_r C e2 (\lambda (c:
64 C).(csubc g e1 c)) H0 c2 H_y) in (ex_intro2 C (\lambda (c1: C).(drop1 PNil c1
65 e1)) (\lambda (c1: C).(csubc g c1 c2)) e1 (drop1_nil e1) H1)))))))) (\lambda
66 (n: nat).(\lambda (n0: nat).(\lambda (p: PList).(\lambda (H: ((\forall (c2:
67 C).(\forall (e2: C).((drop1 p c2 e2) \to (\forall (e1: C).((csubc g e1 e2)
68 \to (ex2 C (\lambda (c1: C).(drop1 p c1 e1)) (\lambda (c1: C).(csubc g c1
69 c2)))))))))).(\lambda (c2: C).(\lambda (e2: C).(\lambda (H0: (drop1 (PCons n
70 n0 p) c2 e2)).(\lambda (e1: C).(\lambda (H1: (csubc g e1 e2)).(let H_x \def
71 (drop1_gen_pcons c2 e2 p n n0 H0) in (let H2 \def H_x in (ex2_ind C (\lambda
72 (c3: C).(drop n n0 c2 c3)) (\lambda (c3: C).(drop1 p c3 e2)) (ex2 C (\lambda
73 (c1: C).(drop1 (PCons n n0 p) c1 e1)) (\lambda (c1: C).(csubc g c1 c2)))
74 (\lambda (x: C).(\lambda (H3: (drop n n0 c2 x)).(\lambda (H4: (drop1 p x
75 e2)).(let H_x0 \def (H x e2 H4 e1 H1) in (let H5 \def H_x0 in (ex2_ind C
76 (\lambda (c1: C).(drop1 p c1 e1)) (\lambda (c1: C).(csubc g c1 x)) (ex2 C
77 (\lambda (c1: C).(drop1 (PCons n n0 p) c1 e1)) (\lambda (c1: C).(csubc g c1
78 c2))) (\lambda (x0: C).(\lambda (H6: (drop1 p x0 e1)).(\lambda (H7: (csubc g
79 x0 x)).(let H_x1 \def (csubc_drop_conf_rev g c2 x n0 n H3 x0 H7) in (let H8
80 \def H_x1 in (ex2_ind C (\lambda (c1: C).(drop n n0 c1 x0)) (\lambda (c1:
81 C).(csubc g c1 c2)) (ex2 C (\lambda (c1: C).(drop1 (PCons n n0 p) c1 e1))
82 (\lambda (c1: C).(csubc g c1 c2))) (\lambda (x1: C).(\lambda (H9: (drop n n0
83 x1 x0)).(\lambda (H10: (csubc g x1 c2)).(ex_intro2 C (\lambda (c1: C).(drop1
84 (PCons n n0 p) c1 e1)) (\lambda (c1: C).(csubc g c1 c2)) x1 (drop1_cons x1 x0
85 n n0 H9 e1 p H6) H10)))) H8)))))) H5)))))) H2)))))))))))) hds)).