1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 include "basic_1/drop/defs.ma".
19 include "basic_1/lift/fwd.ma".
21 include "basic_1/r/props.ma".
23 include "basic_1/C/fwd.ma".
25 implied rec lemma drop_ind (P: (nat \to (nat \to (C \to (C \to Prop))))) (f:
26 (\forall (c: C).(P O O c c))) (f0: (\forall (k: K).(\forall (h: nat).(\forall
27 (c: C).(\forall (e: C).((drop (r k h) O c e) \to ((P (r k h) O c e) \to
28 (\forall (u: T).(P (S h) O (CHead c k u) e))))))))) (f1: (\forall (k:
29 K).(\forall (h: nat).(\forall (d: nat).(\forall (c: C).(\forall (e: C).((drop
30 h (r k d) c e) \to ((P h (r k d) c e) \to (\forall (u: T).(P h (S d) (CHead c
31 k (lift h (r k d) u)) (CHead e k u))))))))))) (n: nat) (n0: nat) (c: C) (c0:
32 C) (d: drop n n0 c c0) on d: P n n0 c c0 \def match d with [(drop_refl c1)
33 \Rightarrow (f c1) | (drop_drop k h c1 e d0 u) \Rightarrow (f0 k h c1 e d0
34 ((drop_ind P f f0 f1) (r k h) O c1 e d0) u) | (drop_skip k h d0 c1 e d1 u)
35 \Rightarrow (f1 k h d0 c1 e d1 ((drop_ind P f f0 f1) h (r k d0) c1 e d1) u)].
38 \forall (n: nat).(\forall (h: nat).(\forall (d: nat).(\forall (x: C).((drop
39 h d (CSort n) x) \to (and3 (eq C x (CSort n)) (eq nat h O) (eq nat d O))))))
41 \lambda (n: nat).(\lambda (h: nat).(\lambda (d: nat).(\lambda (x:
42 C).(\lambda (H: (drop h d (CSort n) x)).(insert_eq C (CSort n) (\lambda (c:
43 C).(drop h d c x)) (\lambda (c: C).(and3 (eq C x c) (eq nat h O) (eq nat d
44 O))) (\lambda (y: C).(\lambda (H0: (drop h d y x)).(drop_ind (\lambda (n0:
45 nat).(\lambda (n1: nat).(\lambda (c: C).(\lambda (c0: C).((eq C c (CSort n))
46 \to (and3 (eq C c0 c) (eq nat n0 O) (eq nat n1 O))))))) (\lambda (c:
47 C).(\lambda (H1: (eq C c (CSort n))).(let H2 \def (f_equal C C (\lambda (e:
48 C).e) c (CSort n) H1) in (eq_ind_r C (CSort n) (\lambda (c0: C).(and3 (eq C
49 c0 c0) (eq nat O O) (eq nat O O))) (and3_intro (eq C (CSort n) (CSort n)) (eq
50 nat O O) (eq nat O O) (refl_equal C (CSort n)) (refl_equal nat O) (refl_equal
51 nat O)) c H2)))) (\lambda (k: K).(\lambda (h0: nat).(\lambda (c: C).(\lambda
52 (e: C).(\lambda (_: (drop (r k h0) O c e)).(\lambda (_: (((eq C c (CSort n))
53 \to (and3 (eq C e c) (eq nat (r k h0) O) (eq nat O O))))).(\lambda (u:
54 T).(\lambda (H3: (eq C (CHead c k u) (CSort n))).(let H4 \def (eq_ind C
55 (CHead c k u) (\lambda (ee: C).(match ee with [(CSort _) \Rightarrow False |
56 (CHead _ _ _) \Rightarrow True])) I (CSort n) H3) in (False_ind (and3 (eq C e
57 (CHead c k u)) (eq nat (S h0) O) (eq nat O O)) H4)))))))))) (\lambda (k:
58 K).(\lambda (h0: nat).(\lambda (d0: nat).(\lambda (c: C).(\lambda (e:
59 C).(\lambda (_: (drop h0 (r k d0) c e)).(\lambda (_: (((eq C c (CSort n)) \to
60 (and3 (eq C e c) (eq nat h0 O) (eq nat (r k d0) O))))).(\lambda (u:
61 T).(\lambda (H3: (eq C (CHead c k (lift h0 (r k d0) u)) (CSort n))).(let H4
62 \def (eq_ind C (CHead c k (lift h0 (r k d0) u)) (\lambda (ee: C).(match ee
63 with [(CSort _) \Rightarrow False | (CHead _ _ _) \Rightarrow True])) I
64 (CSort n) H3) in (False_ind (and3 (eq C (CHead e k u) (CHead c k (lift h0 (r
65 k d0) u))) (eq nat h0 O) (eq nat (S d0) O)) H4))))))))))) h d y x H0)))
69 \forall (x: C).(\forall (e: C).((drop O O x e) \to (eq C x e)))
71 \lambda (x: C).(\lambda (e: C).(\lambda (H: (drop O O x e)).(insert_eq nat O
72 (\lambda (n: nat).(drop n O x e)) (\lambda (_: nat).(eq C x e)) (\lambda (y:
73 nat).(\lambda (H0: (drop y O x e)).(insert_eq nat O (\lambda (n: nat).(drop y
74 n x e)) (\lambda (n: nat).((eq nat y n) \to (eq C x e))) (\lambda (y0:
75 nat).(\lambda (H1: (drop y y0 x e)).(drop_ind (\lambda (n: nat).(\lambda (n0:
76 nat).(\lambda (c: C).(\lambda (c0: C).((eq nat n0 O) \to ((eq nat n n0) \to
77 (eq C c c0))))))) (\lambda (c: C).(\lambda (_: (eq nat O O)).(\lambda (_: (eq
78 nat O O)).(refl_equal C c)))) (\lambda (k: K).(\lambda (h: nat).(\lambda (c:
79 C).(\lambda (e0: C).(\lambda (_: (drop (r k h) O c e0)).(\lambda (_: (((eq
80 nat O O) \to ((eq nat (r k h) O) \to (eq C c e0))))).(\lambda (u: T).(\lambda
81 (_: (eq nat O O)).(\lambda (H5: (eq nat (S h) O)).(let H6 \def (eq_ind nat (S
82 h) (\lambda (ee: nat).(match ee with [O \Rightarrow False | (S _) \Rightarrow
83 True])) I O H5) in (False_ind (eq C (CHead c k u) e0) H6))))))))))) (\lambda
84 (k: K).(\lambda (h: nat).(\lambda (d: nat).(\lambda (c: C).(\lambda (e0:
85 C).(\lambda (H2: (drop h (r k d) c e0)).(\lambda (H3: (((eq nat (r k d) O)
86 \to ((eq nat h (r k d)) \to (eq C c e0))))).(\lambda (u: T).(\lambda (H4: (eq
87 nat (S d) O)).(\lambda (H5: (eq nat h (S d))).(let H6 \def (f_equal nat nat
88 (\lambda (e1: nat).e1) h (S d) H5) in (let H7 \def (eq_ind nat h (\lambda (n:
89 nat).((eq nat (r k d) O) \to ((eq nat n (r k d)) \to (eq C c e0)))) H3 (S d)
90 H6) in (let H8 \def (eq_ind nat h (\lambda (n: nat).(drop n (r k d) c e0)) H2
91 (S d) H6) in (eq_ind_r nat (S d) (\lambda (n: nat).(eq C (CHead c k (lift n
92 (r k d) u)) (CHead e0 k u))) (let H9 \def (eq_ind nat (S d) (\lambda (ee:
93 nat).(match ee with [O \Rightarrow False | (S _) \Rightarrow True])) I O H4)
94 in (False_ind (eq C (CHead c k (lift (S d) (r k d) u)) (CHead e0 k u)) H9)) h
95 H6)))))))))))))) y y0 x e H1))) H0))) H))).
98 \forall (k: K).(\forall (c: C).(\forall (x: C).(\forall (u: T).(\forall (h:
99 nat).((drop (S h) O (CHead c k u) x) \to (drop (r k h) O c x))))))
101 \lambda (k: K).(\lambda (c: C).(\lambda (x: C).(\lambda (u: T).(\lambda (h:
102 nat).(\lambda (H: (drop (S h) O (CHead c k u) x)).(insert_eq C (CHead c k u)
103 (\lambda (c0: C).(drop (S h) O c0 x)) (\lambda (_: C).(drop (r k h) O c x))
104 (\lambda (y: C).(\lambda (H0: (drop (S h) O y x)).(insert_eq nat O (\lambda
105 (n: nat).(drop (S h) n y x)) (\lambda (n: nat).((eq C y (CHead c k u)) \to
106 (drop (r k h) n c x))) (\lambda (y0: nat).(\lambda (H1: (drop (S h) y0 y
107 x)).(insert_eq nat (S h) (\lambda (n: nat).(drop n y0 y x)) (\lambda (_:
108 nat).((eq nat y0 O) \to ((eq C y (CHead c k u)) \to (drop (r k h) y0 c x))))
109 (\lambda (y1: nat).(\lambda (H2: (drop y1 y0 y x)).(drop_ind (\lambda (n:
110 nat).(\lambda (n0: nat).(\lambda (c0: C).(\lambda (c1: C).((eq nat n (S h))
111 \to ((eq nat n0 O) \to ((eq C c0 (CHead c k u)) \to (drop (r k h) n0 c
112 c1)))))))) (\lambda (c0: C).(\lambda (H3: (eq nat O (S h))).(\lambda (_: (eq
113 nat O O)).(\lambda (H5: (eq C c0 (CHead c k u))).(eq_ind_r C (CHead c k u)
114 (\lambda (c1: C).(drop (r k h) O c c1)) (let H6 \def (eq_ind nat O (\lambda
115 (ee: nat).(match ee with [O \Rightarrow True | (S _) \Rightarrow False])) I
116 (S h) H3) in (False_ind (drop (r k h) O c (CHead c k u)) H6)) c0 H5)))))
117 (\lambda (k0: K).(\lambda (h0: nat).(\lambda (c0: C).(\lambda (e: C).(\lambda
118 (H3: (drop (r k0 h0) O c0 e)).(\lambda (H4: (((eq nat (r k0 h0) (S h)) \to
119 ((eq nat O O) \to ((eq C c0 (CHead c k u)) \to (drop (r k h) O c
120 e)))))).(\lambda (u0: T).(\lambda (H5: (eq nat (S h0) (S h))).(\lambda (_:
121 (eq nat O O)).(\lambda (H7: (eq C (CHead c0 k0 u0) (CHead c k u))).(let H8
122 \def (f_equal C C (\lambda (e0: C).(match e0 with [(CSort _) \Rightarrow c0 |
123 (CHead c1 _ _) \Rightarrow c1])) (CHead c0 k0 u0) (CHead c k u) H7) in ((let
124 H9 \def (f_equal C K (\lambda (e0: C).(match e0 with [(CSort _) \Rightarrow
125 k0 | (CHead _ k1 _) \Rightarrow k1])) (CHead c0 k0 u0) (CHead c k u) H7) in
126 ((let H10 \def (f_equal C T (\lambda (e0: C).(match e0 with [(CSort _)
127 \Rightarrow u0 | (CHead _ _ t) \Rightarrow t])) (CHead c0 k0 u0) (CHead c k
128 u) H7) in (\lambda (H11: (eq K k0 k)).(\lambda (H12: (eq C c0 c)).(let H13
129 \def (eq_ind C c0 (\lambda (c1: C).((eq nat (r k0 h0) (S h)) \to ((eq nat O
130 O) \to ((eq C c1 (CHead c k u)) \to (drop (r k h) O c e))))) H4 c H12) in
131 (let H14 \def (eq_ind C c0 (\lambda (c1: C).(drop (r k0 h0) O c1 e)) H3 c
132 H12) in (let H15 \def (eq_ind K k0 (\lambda (k1: K).((eq nat (r k1 h0) (S h))
133 \to ((eq nat O O) \to ((eq C c (CHead c k u)) \to (drop (r k h) O c e)))))
134 H13 k H11) in (let H16 \def (eq_ind K k0 (\lambda (k1: K).(drop (r k1 h0) O c
135 e)) H14 k H11) in (let H17 \def (f_equal nat nat (\lambda (e0: nat).(match e0
136 with [O \Rightarrow h0 | (S n) \Rightarrow n])) (S h0) (S h) H5) in (let H18
137 \def (eq_ind nat h0 (\lambda (n: nat).((eq nat (r k n) (S h)) \to ((eq nat O
138 O) \to ((eq C c (CHead c k u)) \to (drop (r k h) O c e))))) H15 h H17) in
139 (let H19 \def (eq_ind nat h0 (\lambda (n: nat).(drop (r k n) O c e)) H16 h
140 H17) in H19)))))))))) H9)) H8)))))))))))) (\lambda (k0: K).(\lambda (h0:
141 nat).(\lambda (d: nat).(\lambda (c0: C).(\lambda (e: C).(\lambda (H3: (drop
142 h0 (r k0 d) c0 e)).(\lambda (H4: (((eq nat h0 (S h)) \to ((eq nat (r k0 d) O)
143 \to ((eq C c0 (CHead c k u)) \to (drop (r k h) (r k0 d) c e)))))).(\lambda
144 (u0: T).(\lambda (H5: (eq nat h0 (S h))).(\lambda (H6: (eq nat (S d)
145 O)).(\lambda (H7: (eq C (CHead c0 k0 (lift h0 (r k0 d) u0)) (CHead c k
146 u))).(let H8 \def (eq_ind nat h0 (\lambda (n: nat).(eq C (CHead c0 k0 (lift n
147 (r k0 d) u0)) (CHead c k u))) H7 (S h) H5) in (let H9 \def (eq_ind nat h0
148 (\lambda (n: nat).((eq nat n (S h)) \to ((eq nat (r k0 d) O) \to ((eq C c0
149 (CHead c k u)) \to (drop (r k h) (r k0 d) c e))))) H4 (S h) H5) in (let H10
150 \def (eq_ind nat h0 (\lambda (n: nat).(drop n (r k0 d) c0 e)) H3 (S h) H5) in
151 (let H11 \def (f_equal C C (\lambda (e0: C).(match e0 with [(CSort _)
152 \Rightarrow c0 | (CHead c1 _ _) \Rightarrow c1])) (CHead c0 k0 (lift (S h) (r
153 k0 d) u0)) (CHead c k u) H8) in ((let H12 \def (f_equal C K (\lambda (e0:
154 C).(match e0 with [(CSort _) \Rightarrow k0 | (CHead _ k1 _) \Rightarrow
155 k1])) (CHead c0 k0 (lift (S h) (r k0 d) u0)) (CHead c k u) H8) in ((let H13
156 \def (f_equal C T (\lambda (e0: C).(match e0 with [(CSort _) \Rightarrow
157 (lref_map (\lambda (x0: nat).(plus x0 (S h))) (r k0 d) u0) | (CHead _ _ t)
158 \Rightarrow t])) (CHead c0 k0 (lift (S h) (r k0 d) u0)) (CHead c k u) H8) in
159 (\lambda (H14: (eq K k0 k)).(\lambda (H15: (eq C c0 c)).(let H16 \def (eq_ind
160 C c0 (\lambda (c1: C).((eq nat (S h) (S h)) \to ((eq nat (r k0 d) O) \to ((eq
161 C c1 (CHead c k u)) \to (drop (r k h) (r k0 d) c e))))) H9 c H15) in (let H17
162 \def (eq_ind C c0 (\lambda (c1: C).(drop (S h) (r k0 d) c1 e)) H10 c H15) in
163 (let H18 \def (eq_ind K k0 (\lambda (k1: K).(eq T (lift (S h) (r k1 d) u0)
164 u)) H13 k H14) in (let H19 \def (eq_ind K k0 (\lambda (k1: K).((eq nat (S h)
165 (S h)) \to ((eq nat (r k1 d) O) \to ((eq C c (CHead c k u)) \to (drop (r k h)
166 (r k1 d) c e))))) H16 k H14) in (let H20 \def (eq_ind K k0 (\lambda (k1:
167 K).(drop (S h) (r k1 d) c e)) H17 k H14) in (eq_ind_r K k (\lambda (k1:
168 K).(drop (r k h) (S d) c (CHead e k1 u0))) (let H21 \def (eq_ind_r T u
169 (\lambda (t: T).((eq nat (S h) (S h)) \to ((eq nat (r k d) O) \to ((eq C c
170 (CHead c k t)) \to (drop (r k h) (r k d) c e))))) H19 (lift (S h) (r k d) u0)
171 H18) in (let H22 \def (eq_ind nat (S d) (\lambda (ee: nat).(match ee with [O
172 \Rightarrow False | (S _) \Rightarrow True])) I O H6) in (False_ind (drop (r
173 k h) (S d) c (CHead e k u0)) H22))) k0 H14))))))))) H12)) H11))))))))))))))))
174 y1 y0 y x H2))) H1))) H0))) H)))))).
176 lemma drop_gen_skip_r:
177 \forall (c: C).(\forall (x: C).(\forall (u: T).(\forall (h: nat).(\forall
178 (d: nat).(\forall (k: K).((drop h (S d) x (CHead c k u)) \to (ex2 C (\lambda
179 (e: C).(eq C x (CHead e k (lift h (r k d) u)))) (\lambda (e: C).(drop h (r k
182 \lambda (c: C).(\lambda (x: C).(\lambda (u: T).(\lambda (h: nat).(\lambda
183 (d: nat).(\lambda (k: K).(\lambda (H: (drop h (S d) x (CHead c k
184 u))).(insert_eq C (CHead c k u) (\lambda (c0: C).(drop h (S d) x c0))
185 (\lambda (_: C).(ex2 C (\lambda (e: C).(eq C x (CHead e k (lift h (r k d)
186 u)))) (\lambda (e: C).(drop h (r k d) e c)))) (\lambda (y: C).(\lambda (H0:
187 (drop h (S d) x y)).(insert_eq nat (S d) (\lambda (n: nat).(drop h n x y))
188 (\lambda (_: nat).((eq C y (CHead c k u)) \to (ex2 C (\lambda (e: C).(eq C x
189 (CHead e k (lift h (r k d) u)))) (\lambda (e: C).(drop h (r k d) e c)))))
190 (\lambda (y0: nat).(\lambda (H1: (drop h y0 x y)).(drop_ind (\lambda (n:
191 nat).(\lambda (n0: nat).(\lambda (c0: C).(\lambda (c1: C).((eq nat n0 (S d))
192 \to ((eq C c1 (CHead c k u)) \to (ex2 C (\lambda (e: C).(eq C c0 (CHead e k
193 (lift n (r k d) u)))) (\lambda (e: C).(drop n (r k d) e c))))))))) (\lambda
194 (c0: C).(\lambda (H2: (eq nat O (S d))).(\lambda (H3: (eq C c0 (CHead c k
195 u))).(eq_ind_r C (CHead c k u) (\lambda (c1: C).(ex2 C (\lambda (e: C).(eq C
196 c1 (CHead e k (lift O (r k d) u)))) (\lambda (e: C).(drop O (r k d) e c))))
197 (let H4 \def (eq_ind nat O (\lambda (ee: nat).(match ee with [O \Rightarrow
198 True | (S _) \Rightarrow False])) I (S d) H2) in (False_ind (ex2 C (\lambda
199 (e: C).(eq C (CHead c k u) (CHead e k (lift O (r k d) u)))) (\lambda (e:
200 C).(drop O (r k d) e c))) H4)) c0 H3)))) (\lambda (k0: K).(\lambda (h0:
201 nat).(\lambda (c0: C).(\lambda (e: C).(\lambda (H2: (drop (r k0 h0) O c0
202 e)).(\lambda (H3: (((eq nat O (S d)) \to ((eq C e (CHead c k u)) \to (ex2 C
203 (\lambda (e0: C).(eq C c0 (CHead e0 k (lift (r k0 h0) (r k d) u)))) (\lambda
204 (e0: C).(drop (r k0 h0) (r k d) e0 c))))))).(\lambda (u0: T).(\lambda (H4:
205 (eq nat O (S d))).(\lambda (H5: (eq C e (CHead c k u))).(let H6 \def (eq_ind
206 C e (\lambda (c1: C).((eq nat O (S d)) \to ((eq C c1 (CHead c k u)) \to (ex2
207 C (\lambda (e0: C).(eq C c0 (CHead e0 k (lift (r k0 h0) (r k d) u))))
208 (\lambda (e0: C).(drop (r k0 h0) (r k d) e0 c)))))) H3 (CHead c k u) H5) in
209 (let H7 \def (eq_ind C e (\lambda (c1: C).(drop (r k0 h0) O c0 c1)) H2 (CHead
210 c k u) H5) in (let H8 \def (eq_ind nat O (\lambda (ee: nat).(match ee with [O
211 \Rightarrow True | (S _) \Rightarrow False])) I (S d) H4) in (False_ind (ex2
212 C (\lambda (e0: C).(eq C (CHead c0 k0 u0) (CHead e0 k (lift (S h0) (r k d)
213 u)))) (\lambda (e0: C).(drop (S h0) (r k d) e0 c))) H8))))))))))))) (\lambda
214 (k0: K).(\lambda (h0: nat).(\lambda (d0: nat).(\lambda (c0: C).(\lambda (e:
215 C).(\lambda (H2: (drop h0 (r k0 d0) c0 e)).(\lambda (H3: (((eq nat (r k0 d0)
216 (S d)) \to ((eq C e (CHead c k u)) \to (ex2 C (\lambda (e0: C).(eq C c0
217 (CHead e0 k (lift h0 (r k d) u)))) (\lambda (e0: C).(drop h0 (r k d) e0
218 c))))))).(\lambda (u0: T).(\lambda (H4: (eq nat (S d0) (S d))).(\lambda (H5:
219 (eq C (CHead e k0 u0) (CHead c k u))).(let H6 \def (f_equal C C (\lambda (e0:
220 C).(match e0 with [(CSort _) \Rightarrow e | (CHead c1 _ _) \Rightarrow c1]))
221 (CHead e k0 u0) (CHead c k u) H5) in ((let H7 \def (f_equal C K (\lambda (e0:
222 C).(match e0 with [(CSort _) \Rightarrow k0 | (CHead _ k1 _) \Rightarrow
223 k1])) (CHead e k0 u0) (CHead c k u) H5) in ((let H8 \def (f_equal C T
224 (\lambda (e0: C).(match e0 with [(CSort _) \Rightarrow u0 | (CHead _ _ t)
225 \Rightarrow t])) (CHead e k0 u0) (CHead c k u) H5) in (\lambda (H9: (eq K k0
226 k)).(\lambda (H10: (eq C e c)).(eq_ind_r T u (\lambda (t: T).(ex2 C (\lambda
227 (e0: C).(eq C (CHead c0 k0 (lift h0 (r k0 d0) t)) (CHead e0 k (lift h0 (r k
228 d) u)))) (\lambda (e0: C).(drop h0 (r k d) e0 c)))) (let H11 \def (eq_ind C e
229 (\lambda (c1: C).((eq nat (r k0 d0) (S d)) \to ((eq C c1 (CHead c k u)) \to
230 (ex2 C (\lambda (e0: C).(eq C c0 (CHead e0 k (lift h0 (r k d) u)))) (\lambda
231 (e0: C).(drop h0 (r k d) e0 c)))))) H3 c H10) in (let H12 \def (eq_ind C e
232 (\lambda (c1: C).(drop h0 (r k0 d0) c0 c1)) H2 c H10) in (let H13 \def
233 (eq_ind K k0 (\lambda (k1: K).((eq nat (r k1 d0) (S d)) \to ((eq C c (CHead c
234 k u)) \to (ex2 C (\lambda (e0: C).(eq C c0 (CHead e0 k (lift h0 (r k d) u))))
235 (\lambda (e0: C).(drop h0 (r k d) e0 c)))))) H11 k H9) in (let H14 \def
236 (eq_ind K k0 (\lambda (k1: K).(drop h0 (r k1 d0) c0 c)) H12 k H9) in
237 (eq_ind_r K k (\lambda (k1: K).(ex2 C (\lambda (e0: C).(eq C (CHead c0 k1
238 (lift h0 (r k1 d0) u)) (CHead e0 k (lift h0 (r k d) u)))) (\lambda (e0:
239 C).(drop h0 (r k d) e0 c)))) (let H15 \def (f_equal nat nat (\lambda (e0:
240 nat).(match e0 with [O \Rightarrow d0 | (S n) \Rightarrow n])) (S d0) (S d)
241 H4) in (let H16 \def (eq_ind nat d0 (\lambda (n: nat).((eq nat (r k n) (S d))
242 \to ((eq C c (CHead c k u)) \to (ex2 C (\lambda (e0: C).(eq C c0 (CHead e0 k
243 (lift h0 (r k d) u)))) (\lambda (e0: C).(drop h0 (r k d) e0 c)))))) H13 d
244 H15) in (let H17 \def (eq_ind nat d0 (\lambda (n: nat).(drop h0 (r k n) c0
245 c)) H14 d H15) in (eq_ind_r nat d (\lambda (n: nat).(ex2 C (\lambda (e0:
246 C).(eq C (CHead c0 k (lift h0 (r k n) u)) (CHead e0 k (lift h0 (r k d) u))))
247 (\lambda (e0: C).(drop h0 (r k d) e0 c)))) (ex_intro2 C (\lambda (e0: C).(eq
248 C (CHead c0 k (lift h0 (r k d) u)) (CHead e0 k (lift h0 (r k d) u))))
249 (\lambda (e0: C).(drop h0 (r k d) e0 c)) c0 (refl_equal C (CHead c0 k (lift
250 h0 (r k d) u))) H17) d0 H15)))) k0 H9))))) u0 H8)))) H7)) H6)))))))))))) h y0
251 x y H1))) H0))) H))))))).
253 lemma drop_gen_skip_l:
254 \forall (c: C).(\forall (x: C).(\forall (u: T).(\forall (h: nat).(\forall
255 (d: nat).(\forall (k: K).((drop h (S d) (CHead c k u) x) \to (ex3_2 C T
256 (\lambda (e: C).(\lambda (v: T).(eq C x (CHead e k v)))) (\lambda (_:
257 C).(\lambda (v: T).(eq T u (lift h (r k d) v)))) (\lambda (e: C).(\lambda (_:
258 T).(drop h (r k d) c e))))))))))
260 \lambda (c: C).(\lambda (x: C).(\lambda (u: T).(\lambda (h: nat).(\lambda
261 (d: nat).(\lambda (k: K).(\lambda (H: (drop h (S d) (CHead c k u)
262 x)).(insert_eq C (CHead c k u) (\lambda (c0: C).(drop h (S d) c0 x)) (\lambda
263 (_: C).(ex3_2 C T (\lambda (e: C).(\lambda (v: T).(eq C x (CHead e k v))))
264 (\lambda (_: C).(\lambda (v: T).(eq T u (lift h (r k d) v)))) (\lambda (e:
265 C).(\lambda (_: T).(drop h (r k d) c e))))) (\lambda (y: C).(\lambda (H0:
266 (drop h (S d) y x)).(insert_eq nat (S d) (\lambda (n: nat).(drop h n y x))
267 (\lambda (_: nat).((eq C y (CHead c k u)) \to (ex3_2 C T (\lambda (e:
268 C).(\lambda (v: T).(eq C x (CHead e k v)))) (\lambda (_: C).(\lambda (v:
269 T).(eq T u (lift h (r k d) v)))) (\lambda (e: C).(\lambda (_: T).(drop h (r k
270 d) c e)))))) (\lambda (y0: nat).(\lambda (H1: (drop h y0 y x)).(drop_ind
271 (\lambda (n: nat).(\lambda (n0: nat).(\lambda (c0: C).(\lambda (c1: C).((eq
272 nat n0 (S d)) \to ((eq C c0 (CHead c k u)) \to (ex3_2 C T (\lambda (e:
273 C).(\lambda (v: T).(eq C c1 (CHead e k v)))) (\lambda (_: C).(\lambda (v:
274 T).(eq T u (lift n (r k d) v)))) (\lambda (e: C).(\lambda (_: T).(drop n (r k
275 d) c e)))))))))) (\lambda (c0: C).(\lambda (H2: (eq nat O (S d))).(\lambda
276 (H3: (eq C c0 (CHead c k u))).(eq_ind_r C (CHead c k u) (\lambda (c1:
277 C).(ex3_2 C T (\lambda (e: C).(\lambda (v: T).(eq C c1 (CHead e k v))))
278 (\lambda (_: C).(\lambda (v: T).(eq T u (lift O (r k d) v)))) (\lambda (e:
279 C).(\lambda (_: T).(drop O (r k d) c e))))) (let H4 \def (eq_ind nat O
280 (\lambda (ee: nat).(match ee with [O \Rightarrow True | (S _) \Rightarrow
281 False])) I (S d) H2) in (False_ind (ex3_2 C T (\lambda (e: C).(\lambda (v:
282 T).(eq C (CHead c k u) (CHead e k v)))) (\lambda (_: C).(\lambda (v: T).(eq T
283 u (lift O (r k d) v)))) (\lambda (e: C).(\lambda (_: T).(drop O (r k d) c
284 e)))) H4)) c0 H3)))) (\lambda (k0: K).(\lambda (h0: nat).(\lambda (c0:
285 C).(\lambda (e: C).(\lambda (H2: (drop (r k0 h0) O c0 e)).(\lambda (H3: (((eq
286 nat O (S d)) \to ((eq C c0 (CHead c k u)) \to (ex3_2 C T (\lambda (e0:
287 C).(\lambda (v: T).(eq C e (CHead e0 k v)))) (\lambda (_: C).(\lambda (v:
288 T).(eq T u (lift (r k0 h0) (r k d) v)))) (\lambda (e0: C).(\lambda (_:
289 T).(drop (r k0 h0) (r k d) c e0)))))))).(\lambda (u0: T).(\lambda (H4: (eq
290 nat O (S d))).(\lambda (H5: (eq C (CHead c0 k0 u0) (CHead c k u))).(let H6
291 \def (f_equal C C (\lambda (e0: C).(match e0 with [(CSort _) \Rightarrow c0 |
292 (CHead c1 _ _) \Rightarrow c1])) (CHead c0 k0 u0) (CHead c k u) H5) in ((let
293 H7 \def (f_equal C K (\lambda (e0: C).(match e0 with [(CSort _) \Rightarrow
294 k0 | (CHead _ k1 _) \Rightarrow k1])) (CHead c0 k0 u0) (CHead c k u) H5) in
295 ((let H8 \def (f_equal C T (\lambda (e0: C).(match e0 with [(CSort _)
296 \Rightarrow u0 | (CHead _ _ t) \Rightarrow t])) (CHead c0 k0 u0) (CHead c k
297 u) H5) in (\lambda (H9: (eq K k0 k)).(\lambda (H10: (eq C c0 c)).(let H11
298 \def (eq_ind C c0 (\lambda (c1: C).((eq nat O (S d)) \to ((eq C c1 (CHead c k
299 u)) \to (ex3_2 C T (\lambda (e0: C).(\lambda (v: T).(eq C e (CHead e0 k v))))
300 (\lambda (_: C).(\lambda (v: T).(eq T u (lift (r k0 h0) (r k d) v))))
301 (\lambda (e0: C).(\lambda (_: T).(drop (r k0 h0) (r k d) c e0))))))) H3 c
302 H10) in (let H12 \def (eq_ind C c0 (\lambda (c1: C).(drop (r k0 h0) O c1 e))
303 H2 c H10) in (let H13 \def (eq_ind K k0 (\lambda (k1: K).((eq nat O (S d))
304 \to ((eq C c (CHead c k u)) \to (ex3_2 C T (\lambda (e0: C).(\lambda (v:
305 T).(eq C e (CHead e0 k v)))) (\lambda (_: C).(\lambda (v: T).(eq T u (lift (r
306 k1 h0) (r k d) v)))) (\lambda (e0: C).(\lambda (_: T).(drop (r k1 h0) (r k d)
307 c e0))))))) H11 k H9) in (let H14 \def (eq_ind K k0 (\lambda (k1: K).(drop (r
308 k1 h0) O c e)) H12 k H9) in (let H15 \def (eq_ind nat O (\lambda (ee:
309 nat).(match ee with [O \Rightarrow True | (S _) \Rightarrow False])) I (S d)
310 H4) in (False_ind (ex3_2 C T (\lambda (e0: C).(\lambda (v: T).(eq C e (CHead
311 e0 k v)))) (\lambda (_: C).(\lambda (v: T).(eq T u (lift (S h0) (r k d) v))))
312 (\lambda (e0: C).(\lambda (_: T).(drop (S h0) (r k d) c e0)))) H15)))))))))
313 H7)) H6))))))))))) (\lambda (k0: K).(\lambda (h0: nat).(\lambda (d0:
314 nat).(\lambda (c0: C).(\lambda (e: C).(\lambda (H2: (drop h0 (r k0 d0) c0
315 e)).(\lambda (H3: (((eq nat (r k0 d0) (S d)) \to ((eq C c0 (CHead c k u)) \to
316 (ex3_2 C T (\lambda (e0: C).(\lambda (v: T).(eq C e (CHead e0 k v))))
317 (\lambda (_: C).(\lambda (v: T).(eq T u (lift h0 (r k d) v)))) (\lambda (e0:
318 C).(\lambda (_: T).(drop h0 (r k d) c e0)))))))).(\lambda (u0: T).(\lambda
319 (H4: (eq nat (S d0) (S d))).(\lambda (H5: (eq C (CHead c0 k0 (lift h0 (r k0
320 d0) u0)) (CHead c k u))).(let H6 \def (f_equal C C (\lambda (e0: C).(match e0
321 with [(CSort _) \Rightarrow c0 | (CHead c1 _ _) \Rightarrow c1])) (CHead c0
322 k0 (lift h0 (r k0 d0) u0)) (CHead c k u) H5) in ((let H7 \def (f_equal C K
323 (\lambda (e0: C).(match e0 with [(CSort _) \Rightarrow k0 | (CHead _ k1 _)
324 \Rightarrow k1])) (CHead c0 k0 (lift h0 (r k0 d0) u0)) (CHead c k u) H5) in
325 ((let H8 \def (f_equal C T (\lambda (e0: C).(match e0 with [(CSort _)
326 \Rightarrow (lref_map (\lambda (x0: nat).(plus x0 h0)) (r k0 d0) u0) | (CHead
327 _ _ t) \Rightarrow t])) (CHead c0 k0 (lift h0 (r k0 d0) u0)) (CHead c k u)
328 H5) in (\lambda (H9: (eq K k0 k)).(\lambda (H10: (eq C c0 c)).(let H11 \def
329 (eq_ind C c0 (\lambda (c1: C).((eq nat (r k0 d0) (S d)) \to ((eq C c1 (CHead
330 c k u)) \to (ex3_2 C T (\lambda (e0: C).(\lambda (v: T).(eq C e (CHead e0 k
331 v)))) (\lambda (_: C).(\lambda (v: T).(eq T u (lift h0 (r k d) v)))) (\lambda
332 (e0: C).(\lambda (_: T).(drop h0 (r k d) c e0))))))) H3 c H10) in (let H12
333 \def (eq_ind C c0 (\lambda (c1: C).(drop h0 (r k0 d0) c1 e)) H2 c H10) in
334 (let H13 \def (eq_ind K k0 (\lambda (k1: K).(eq T (lift h0 (r k1 d0) u0) u))
335 H8 k H9) in (let H14 \def (eq_ind K k0 (\lambda (k1: K).((eq nat (r k1 d0) (S
336 d)) \to ((eq C c (CHead c k u)) \to (ex3_2 C T (\lambda (e0: C).(\lambda (v:
337 T).(eq C e (CHead e0 k v)))) (\lambda (_: C).(\lambda (v: T).(eq T u (lift h0
338 (r k d) v)))) (\lambda (e0: C).(\lambda (_: T).(drop h0 (r k d) c e0)))))))
339 H11 k H9) in (let H15 \def (eq_ind K k0 (\lambda (k1: K).(drop h0 (r k1 d0) c
340 e)) H12 k H9) in (eq_ind_r K k (\lambda (k1: K).(ex3_2 C T (\lambda (e0:
341 C).(\lambda (v: T).(eq C (CHead e k1 u0) (CHead e0 k v)))) (\lambda (_:
342 C).(\lambda (v: T).(eq T u (lift h0 (r k d) v)))) (\lambda (e0: C).(\lambda
343 (_: T).(drop h0 (r k d) c e0))))) (let H16 \def (eq_ind_r T u (\lambda (t:
344 T).((eq nat (r k d0) (S d)) \to ((eq C c (CHead c k t)) \to (ex3_2 C T
345 (\lambda (e0: C).(\lambda (v: T).(eq C e (CHead e0 k v)))) (\lambda (_:
346 C).(\lambda (v: T).(eq T t (lift h0 (r k d) v)))) (\lambda (e0: C).(\lambda
347 (_: T).(drop h0 (r k d) c e0))))))) H14 (lift h0 (r k d0) u0) H13) in (eq_ind
348 T (lift h0 (r k d0) u0) (\lambda (t: T).(ex3_2 C T (\lambda (e0: C).(\lambda
349 (v: T).(eq C (CHead e k u0) (CHead e0 k v)))) (\lambda (_: C).(\lambda (v:
350 T).(eq T t (lift h0 (r k d) v)))) (\lambda (e0: C).(\lambda (_: T).(drop h0
351 (r k d) c e0))))) (let H17 \def (f_equal nat nat (\lambda (e0: nat).(match e0
352 with [O \Rightarrow d0 | (S n) \Rightarrow n])) (S d0) (S d) H4) in (let H18
353 \def (eq_ind nat d0 (\lambda (n: nat).((eq nat (r k n) (S d)) \to ((eq C c
354 (CHead c k (lift h0 (r k n) u0))) \to (ex3_2 C T (\lambda (e0: C).(\lambda
355 (v: T).(eq C e (CHead e0 k v)))) (\lambda (_: C).(\lambda (v: T).(eq T (lift
356 h0 (r k n) u0) (lift h0 (r k d) v)))) (\lambda (e0: C).(\lambda (_: T).(drop
357 h0 (r k d) c e0))))))) H16 d H17) in (let H19 \def (eq_ind nat d0 (\lambda
358 (n: nat).(drop h0 (r k n) c e)) H15 d H17) in (eq_ind_r nat d (\lambda (n:
359 nat).(ex3_2 C T (\lambda (e0: C).(\lambda (v: T).(eq C (CHead e k u0) (CHead
360 e0 k v)))) (\lambda (_: C).(\lambda (v: T).(eq T (lift h0 (r k n) u0) (lift
361 h0 (r k d) v)))) (\lambda (e0: C).(\lambda (_: T).(drop h0 (r k d) c e0)))))
362 (ex3_2_intro C T (\lambda (e0: C).(\lambda (v: T).(eq C (CHead e k u0) (CHead
363 e0 k v)))) (\lambda (_: C).(\lambda (v: T).(eq T (lift h0 (r k d) u0) (lift
364 h0 (r k d) v)))) (\lambda (e0: C).(\lambda (_: T).(drop h0 (r k d) c e0))) e
365 u0 (refl_equal C (CHead e k u0)) (refl_equal T (lift h0 (r k d) u0)) H19) d0
366 H17)))) u H13)) k0 H9))))))))) H7)) H6)))))))))))) h y0 y x H1))) H0)))
370 \forall (b: B).(\forall (c: C).(\forall (e: C).(\forall (u: T).(\forall (h:
371 nat).((drop h O c (CHead e (Bind b) u)) \to (drop (S h) O c e))))))
373 \lambda (b: B).(\lambda (c: C).(C_ind (\lambda (c0: C).(\forall (e:
374 C).(\forall (u: T).(\forall (h: nat).((drop h O c0 (CHead e (Bind b) u)) \to
375 (drop (S h) O c0 e)))))) (\lambda (n: nat).(\lambda (e: C).(\lambda (u:
376 T).(\lambda (h: nat).(\lambda (H: (drop h O (CSort n) (CHead e (Bind b)
377 u))).(and3_ind (eq C (CHead e (Bind b) u) (CSort n)) (eq nat h O) (eq nat O
378 O) (drop (S h) O (CSort n) e) (\lambda (H0: (eq C (CHead e (Bind b) u) (CSort
379 n))).(\lambda (H1: (eq nat h O)).(\lambda (_: (eq nat O O)).(eq_ind_r nat O
380 (\lambda (n0: nat).(drop (S n0) O (CSort n) e)) (let H3 \def (eq_ind C (CHead
381 e (Bind b) u) (\lambda (ee: C).(match ee with [(CSort _) \Rightarrow False |
382 (CHead _ _ _) \Rightarrow True])) I (CSort n) H0) in (False_ind (drop (S O) O
383 (CSort n) e) H3)) h H1)))) (drop_gen_sort n h O (CHead e (Bind b) u) H)))))))
384 (\lambda (c0: C).(\lambda (H: ((\forall (e: C).(\forall (u: T).(\forall (h:
385 nat).((drop h O c0 (CHead e (Bind b) u)) \to (drop (S h) O c0
386 e))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (e: C).(\lambda (u:
387 T).(\lambda (h: nat).(nat_ind (\lambda (n: nat).((drop n O (CHead c0 k t)
388 (CHead e (Bind b) u)) \to (drop (S n) O (CHead c0 k t) e))) (\lambda (H0:
389 (drop O O (CHead c0 k t) (CHead e (Bind b) u))).(let H1 \def (f_equal C C
390 (\lambda (e0: C).(match e0 with [(CSort _) \Rightarrow c0 | (CHead c1 _ _)
391 \Rightarrow c1])) (CHead c0 k t) (CHead e (Bind b) u) (drop_gen_refl (CHead
392 c0 k t) (CHead e (Bind b) u) H0)) in ((let H2 \def (f_equal C K (\lambda (e0:
393 C).(match e0 with [(CSort _) \Rightarrow k | (CHead _ k0 _) \Rightarrow k0]))
394 (CHead c0 k t) (CHead e (Bind b) u) (drop_gen_refl (CHead c0 k t) (CHead e
395 (Bind b) u) H0)) in ((let H3 \def (f_equal C T (\lambda (e0: C).(match e0
396 with [(CSort _) \Rightarrow t | (CHead _ _ t0) \Rightarrow t0])) (CHead c0 k
397 t) (CHead e (Bind b) u) (drop_gen_refl (CHead c0 k t) (CHead e (Bind b) u)
398 H0)) in (\lambda (H4: (eq K k (Bind b))).(\lambda (H5: (eq C c0 e)).(eq_ind C
399 c0 (\lambda (c1: C).(drop (S O) O (CHead c0 k t) c1)) (eq_ind_r K (Bind b)
400 (\lambda (k0: K).(drop (S O) O (CHead c0 k0 t) c0)) (drop_drop (Bind b) O c0
401 c0 (drop_refl c0) t) k H4) e H5)))) H2)) H1))) (\lambda (n: nat).(\lambda (_:
402 (((drop n O (CHead c0 k t) (CHead e (Bind b) u)) \to (drop (S n) O (CHead c0
403 k t) e)))).(\lambda (H1: (drop (S n) O (CHead c0 k t) (CHead e (Bind b)
404 u))).(drop_drop k (S n) c0 e (eq_ind_r nat (S (r k n)) (\lambda (n0:
405 nat).(drop n0 O c0 e)) (H e u (r k n) (drop_gen_drop k c0 (CHead e (Bind b)
406 u) t n H1)) (r k (S n)) (r_S k n)) t)))) h)))))))) c)).
409 \forall (c: C).(\forall (x1: C).(\forall (d: nat).(\forall (h: nat).((drop h
410 d c x1) \to (\forall (x2: C).((drop h d c x2) \to (eq C x1 x2)))))))
412 \lambda (c: C).(C_ind (\lambda (c0: C).(\forall (x1: C).(\forall (d:
413 nat).(\forall (h: nat).((drop h d c0 x1) \to (\forall (x2: C).((drop h d c0
414 x2) \to (eq C x1 x2)))))))) (\lambda (n: nat).(\lambda (x1: C).(\lambda (d:
415 nat).(\lambda (h: nat).(\lambda (H: (drop h d (CSort n) x1)).(\lambda (x2:
416 C).(\lambda (H0: (drop h d (CSort n) x2)).(and3_ind (eq C x2 (CSort n)) (eq
417 nat h O) (eq nat d O) (eq C x1 x2) (\lambda (H1: (eq C x2 (CSort
418 n))).(\lambda (H2: (eq nat h O)).(\lambda (H3: (eq nat d O)).(and3_ind (eq C
419 x1 (CSort n)) (eq nat h O) (eq nat d O) (eq C x1 x2) (\lambda (H4: (eq C x1
420 (CSort n))).(\lambda (H5: (eq nat h O)).(\lambda (H6: (eq nat d O)).(eq_ind_r
421 C (CSort n) (\lambda (c0: C).(eq C x1 c0)) (let H7 \def (eq_ind nat h
422 (\lambda (n0: nat).(eq nat n0 O)) H2 O H5) in (let H8 \def (eq_ind nat d
423 (\lambda (n0: nat).(eq nat n0 O)) H3 O H6) in (eq_ind_r C (CSort n) (\lambda
424 (c0: C).(eq C c0 (CSort n))) (refl_equal C (CSort n)) x1 H4))) x2 H1))))
425 (drop_gen_sort n h d x1 H))))) (drop_gen_sort n h d x2 H0))))))))) (\lambda
426 (c0: C).(\lambda (H: ((\forall (x1: C).(\forall (d: nat).(\forall (h:
427 nat).((drop h d c0 x1) \to (\forall (x2: C).((drop h d c0 x2) \to (eq C x1
428 x2))))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (x1: C).(\lambda (d:
429 nat).(nat_ind (\lambda (n: nat).(\forall (h: nat).((drop h n (CHead c0 k t)
430 x1) \to (\forall (x2: C).((drop h n (CHead c0 k t) x2) \to (eq C x1 x2))))))
431 (\lambda (h: nat).(nat_ind (\lambda (n: nat).((drop n O (CHead c0 k t) x1)
432 \to (\forall (x2: C).((drop n O (CHead c0 k t) x2) \to (eq C x1 x2)))))
433 (\lambda (H0: (drop O O (CHead c0 k t) x1)).(\lambda (x2: C).(\lambda (H1:
434 (drop O O (CHead c0 k t) x2)).(eq_ind C (CHead c0 k t) (\lambda (c1: C).(eq C
435 x1 c1)) (eq_ind C (CHead c0 k t) (\lambda (c1: C).(eq C c1 (CHead c0 k t)))
436 (refl_equal C (CHead c0 k t)) x1 (drop_gen_refl (CHead c0 k t) x1 H0)) x2
437 (drop_gen_refl (CHead c0 k t) x2 H1))))) (\lambda (n: nat).(\lambda (_:
438 (((drop n O (CHead c0 k t) x1) \to (\forall (x2: C).((drop n O (CHead c0 k t)
439 x2) \to (eq C x1 x2)))))).(\lambda (H1: (drop (S n) O (CHead c0 k t)
440 x1)).(\lambda (x2: C).(\lambda (H2: (drop (S n) O (CHead c0 k t) x2)).(H x1 O
441 (r k n) (drop_gen_drop k c0 x1 t n H1) x2 (drop_gen_drop k c0 x2 t n
442 H2))))))) h)) (\lambda (n: nat).(\lambda (H0: ((\forall (h: nat).((drop h n
443 (CHead c0 k t) x1) \to (\forall (x2: C).((drop h n (CHead c0 k t) x2) \to (eq
444 C x1 x2))))))).(\lambda (h: nat).(\lambda (H1: (drop h (S n) (CHead c0 k t)
445 x1)).(\lambda (x2: C).(\lambda (H2: (drop h (S n) (CHead c0 k t)
446 x2)).(ex3_2_ind C T (\lambda (e: C).(\lambda (v: T).(eq C x2 (CHead e k v))))
447 (\lambda (_: C).(\lambda (v: T).(eq T t (lift h (r k n) v)))) (\lambda (e:
448 C).(\lambda (_: T).(drop h (r k n) c0 e))) (eq C x1 x2) (\lambda (x0:
449 C).(\lambda (x3: T).(\lambda (H3: (eq C x2 (CHead x0 k x3))).(\lambda (H4:
450 (eq T t (lift h (r k n) x3))).(\lambda (H5: (drop h (r k n) c0
451 x0)).(ex3_2_ind C T (\lambda (e: C).(\lambda (v: T).(eq C x1 (CHead e k v))))
452 (\lambda (_: C).(\lambda (v: T).(eq T t (lift h (r k n) v)))) (\lambda (e:
453 C).(\lambda (_: T).(drop h (r k n) c0 e))) (eq C x1 x2) (\lambda (x4:
454 C).(\lambda (x5: T).(\lambda (H6: (eq C x1 (CHead x4 k x5))).(\lambda (H7:
455 (eq T t (lift h (r k n) x5))).(\lambda (H8: (drop h (r k n) c0 x4)).(eq_ind_r
456 C (CHead x0 k x3) (\lambda (c1: C).(eq C x1 c1)) (let H9 \def (eq_ind C x1
457 (\lambda (c1: C).(\forall (h0: nat).((drop h0 n (CHead c0 k t) c1) \to
458 (\forall (x6: C).((drop h0 n (CHead c0 k t) x6) \to (eq C c1 x6)))))) H0
459 (CHead x4 k x5) H6) in (eq_ind_r C (CHead x4 k x5) (\lambda (c1: C).(eq C c1
460 (CHead x0 k x3))) (let H10 \def (eq_ind T t (\lambda (t0: T).(\forall (h0:
461 nat).((drop h0 n (CHead c0 k t0) (CHead x4 k x5)) \to (\forall (x6: C).((drop
462 h0 n (CHead c0 k t0) x6) \to (eq C (CHead x4 k x5) x6)))))) H9 (lift h (r k
463 n) x5) H7) in (let H11 \def (eq_ind T t (\lambda (t0: T).(eq T t0 (lift h (r
464 k n) x3))) H4 (lift h (r k n) x5) H7) in (let H12 \def (eq_ind T x5 (\lambda
465 (t0: T).(\forall (h0: nat).((drop h0 n (CHead c0 k (lift h (r k n) t0))
466 (CHead x4 k t0)) \to (\forall (x6: C).((drop h0 n (CHead c0 k (lift h (r k n)
467 t0)) x6) \to (eq C (CHead x4 k t0) x6)))))) H10 x3 (lift_inj x5 x3 h (r k n)
468 H11)) in (eq_ind_r T x3 (\lambda (t0: T).(eq C (CHead x4 k t0) (CHead x0 k
469 x3))) (sym_eq C (CHead x0 k x3) (CHead x4 k x3) (sym_eq C (CHead x4 k x3)
470 (CHead x0 k x3) (sym_eq C (CHead x0 k x3) (CHead x4 k x3) (f_equal3 C K T C
471 CHead x0 x4 k k x3 x3 (H x0 (r k n) h H5 x4 H8) (refl_equal K k) (refl_equal
472 T x3))))) x5 (lift_inj x5 x3 h (r k n) H11))))) x1 H6)) x2 H3))))))
473 (drop_gen_skip_l c0 x1 t h n k H1))))))) (drop_gen_skip_l c0 x2 t h n k
474 H2)))))))) d))))))) c).