]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_1/drop1/props.ma
refactoring completed
[helm.git] / matita / matita / contribs / lambdadelta / basic_1 / drop1 / props.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 (* This file was automatically generated: do not edit *********************)
16
17 include "basic_1/drop1/fwd.ma".
18
19 include "basic_1/drop/props.ma".
20
21 include "basic_1/getl/defs.ma".
22
23 lemma drop1_skip_bind:
24  \forall (b: B).(\forall (e: C).(\forall (hds: PList).(\forall (c: 
25 C).(\forall (u: T).((drop1 hds c e) \to (drop1 (Ss hds) (CHead c (Bind b) 
26 (lift1 hds u)) (CHead e (Bind b) u)))))))
27 \def
28  \lambda (b: B).(\lambda (e: C).(\lambda (hds: PList).(PList_ind (\lambda (p: 
29 PList).(\forall (c: C).(\forall (u: T).((drop1 p c e) \to (drop1 (Ss p) 
30 (CHead c (Bind b) (lift1 p u)) (CHead e (Bind b) u)))))) (\lambda (c: 
31 C).(\lambda (u: T).(\lambda (H: (drop1 PNil c e)).(let H_y \def 
32 (drop1_gen_pnil c e H) in (eq_ind_r C e (\lambda (c0: C).(drop1 PNil (CHead 
33 c0 (Bind b) u) (CHead e (Bind b) u))) (drop1_nil (CHead e (Bind b) u)) c 
34 H_y))))) (\lambda (n: nat).(\lambda (n0: nat).(\lambda (p: PList).(\lambda 
35 (H: ((\forall (c: C).(\forall (u: T).((drop1 p c e) \to (drop1 (Ss p) (CHead 
36 c (Bind b) (lift1 p u)) (CHead e (Bind b) u))))))).(\lambda (c: C).(\lambda 
37 (u: T).(\lambda (H0: (drop1 (PCons n n0 p) c e)).(let H_x \def 
38 (drop1_gen_pcons c e p n n0 H0) in (let H1 \def H_x in (ex2_ind C (\lambda 
39 (c2: C).(drop n n0 c c2)) (\lambda (c2: C).(drop1 p c2 e)) (drop1 (PCons n (S 
40 n0) (Ss p)) (CHead c (Bind b) (lift n n0 (lift1 p u))) (CHead e (Bind b) u)) 
41 (\lambda (x: C).(\lambda (H2: (drop n n0 c x)).(\lambda (H3: (drop1 p x 
42 e)).(drop1_cons (CHead c (Bind b) (lift n n0 (lift1 p u))) (CHead x (Bind b) 
43 (lift1 p u)) n (S n0) (drop_skip_bind n n0 c x H2 b (lift1 p u)) (CHead e 
44 (Bind b) u) (Ss p) (H x u H3))))) H1)))))))))) hds))).
45
46 lemma drop1_cons_tail:
47  \forall (c2: C).(\forall (c3: C).(\forall (h: nat).(\forall (d: nat).((drop 
48 h d c2 c3) \to (\forall (hds: PList).(\forall (c1: C).((drop1 hds c1 c2) \to 
49 (drop1 (PConsTail hds h d) c1 c3))))))))
50 \def
51  \lambda (c2: C).(\lambda (c3: C).(\lambda (h: nat).(\lambda (d: 
52 nat).(\lambda (H: (drop h d c2 c3)).(\lambda (hds: PList).(PList_ind (\lambda 
53 (p: PList).(\forall (c1: C).((drop1 p c1 c2) \to (drop1 (PConsTail p h d) c1 
54 c3)))) (\lambda (c1: C).(\lambda (H0: (drop1 PNil c1 c2)).(let H_y \def 
55 (drop1_gen_pnil c1 c2 H0) in (eq_ind_r C c2 (\lambda (c: C).(drop1 (PCons h d 
56 PNil) c c3)) (drop1_cons c2 c3 h d H c3 PNil (drop1_nil c3)) c1 H_y)))) 
57 (\lambda (n: nat).(\lambda (n0: nat).(\lambda (p: PList).(\lambda (H0: 
58 ((\forall (c1: C).((drop1 p c1 c2) \to (drop1 (PConsTail p h d) c1 
59 c3))))).(\lambda (c1: C).(\lambda (H1: (drop1 (PCons n n0 p) c1 c2)).(let H_x 
60 \def (drop1_gen_pcons c1 c2 p n n0 H1) in (let H2 \def H_x in (ex2_ind C 
61 (\lambda (c4: C).(drop n n0 c1 c4)) (\lambda (c4: C).(drop1 p c4 c2)) (drop1 
62 (PCons n n0 (PConsTail p h d)) c1 c3) (\lambda (x: C).(\lambda (H3: (drop n 
63 n0 c1 x)).(\lambda (H4: (drop1 p x c2)).(drop1_cons c1 x n n0 H3 c3 
64 (PConsTail p h d) (H0 x H4))))) H2))))))))) hds)))))).
65
66 theorem drop1_trans:
67  \forall (is1: PList).(\forall (c1: C).(\forall (c0: C).((drop1 is1 c1 c0) 
68 \to (\forall (is2: PList).(\forall (c2: C).((drop1 is2 c0 c2) \to (drop1 
69 (papp is1 is2) c1 c2)))))))
70 \def
71  \lambda (is1: PList).(PList_ind (\lambda (p: PList).(\forall (c1: 
72 C).(\forall (c0: C).((drop1 p c1 c0) \to (\forall (is2: PList).(\forall (c2: 
73 C).((drop1 is2 c0 c2) \to (drop1 (papp p is2) c1 c2)))))))) (\lambda (c1: 
74 C).(\lambda (c0: C).(\lambda (H: (drop1 PNil c1 c0)).(\lambda (is2: 
75 PList).(\lambda (c2: C).(\lambda (H0: (drop1 is2 c0 c2)).(let H_y \def 
76 (drop1_gen_pnil c1 c0 H) in (let H1 \def (eq_ind_r C c0 (\lambda (c: 
77 C).(drop1 is2 c c2)) H0 c1 H_y) in H1)))))))) (\lambda (n: nat).(\lambda (n0: 
78 nat).(\lambda (p: PList).(\lambda (H: ((\forall (c1: C).(\forall (c0: 
79 C).((drop1 p c1 c0) \to (\forall (is2: PList).(\forall (c2: C).((drop1 is2 c0 
80 c2) \to (drop1 (papp p is2) c1 c2))))))))).(\lambda (c1: C).(\lambda (c0: 
81 C).(\lambda (H0: (drop1 (PCons n n0 p) c1 c0)).(\lambda (is2: PList).(\lambda 
82 (c2: C).(\lambda (H1: (drop1 is2 c0 c2)).(let H_x \def (drop1_gen_pcons c1 c0 
83 p n n0 H0) in (let H2 \def H_x in (ex2_ind C (\lambda (c3: C).(drop n n0 c1 
84 c3)) (\lambda (c3: C).(drop1 p c3 c0)) (drop1 (PCons n n0 (papp p is2)) c1 
85 c2) (\lambda (x: C).(\lambda (H3: (drop n n0 c1 x)).(\lambda (H4: (drop1 p x 
86 c0)).(drop1_cons c1 x n n0 H3 c2 (papp p is2) (H x c0 H4 is2 c2 H1))))) 
87 H2))))))))))))) is1).
88