1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 include "basic_1/fsubst0/defs.ma".
19 implied lemma fsubst0_ind:
20 \forall (i: nat).(\forall (v: T).(\forall (c1: C).(\forall (t1: T).(\forall
21 (P: ((C \to (T \to Prop)))).(((\forall (t2: T).((subst0 i v t1 t2) \to (P c1
22 t2)))) \to (((\forall (c2: C).((csubst0 i v c1 c2) \to (P c2 t1)))) \to
23 (((\forall (t2: T).((subst0 i v t1 t2) \to (\forall (c2: C).((csubst0 i v c1
24 c2) \to (P c2 t2)))))) \to (\forall (c: C).(\forall (t: T).((fsubst0 i v c1
25 t1 c t) \to (P c t)))))))))))
27 \lambda (i: nat).(\lambda (v: T).(\lambda (c1: C).(\lambda (t1: T).(\lambda
28 (P: ((C \to (T \to Prop)))).(\lambda (f: ((\forall (t2: T).((subst0 i v t1
29 t2) \to (P c1 t2))))).(\lambda (f0: ((\forall (c2: C).((csubst0 i v c1 c2)
30 \to (P c2 t1))))).(\lambda (f1: ((\forall (t2: T).((subst0 i v t1 t2) \to
31 (\forall (c2: C).((csubst0 i v c1 c2) \to (P c2 t2))))))).(\lambda (c:
32 C).(\lambda (t: T).(\lambda (f2: (fsubst0 i v c1 t1 c t)).(match f2 with
33 [(fsubst0_snd x x0) \Rightarrow (f x x0) | (fsubst0_fst x x0) \Rightarrow (f0
34 x x0) | (fsubst0_both x x0 x1 x2) \Rightarrow (f1 x x0 x1 x2)]))))))))))).
36 lemma fsubst0_gen_base:
37 \forall (c1: C).(\forall (c2: C).(\forall (t1: T).(\forall (t2: T).(\forall
38 (v: T).(\forall (i: nat).((fsubst0 i v c1 t1 c2 t2) \to (or3 (land (eq C c1
39 c2) (subst0 i v t1 t2)) (land (eq T t1 t2) (csubst0 i v c1 c2)) (land (subst0
40 i v t1 t2) (csubst0 i v c1 c2)))))))))
42 \lambda (c1: C).(\lambda (c2: C).(\lambda (t1: T).(\lambda (t2: T).(\lambda
43 (v: T).(\lambda (i: nat).(\lambda (H: (fsubst0 i v c1 t1 c2 t2)).(fsubst0_ind
44 i v c1 t1 (\lambda (c: C).(\lambda (t: T).(or3 (land (eq C c1 c) (subst0 i v
45 t1 t)) (land (eq T t1 t) (csubst0 i v c1 c)) (land (subst0 i v t1 t) (csubst0
46 i v c1 c))))) (\lambda (t0: T).(\lambda (H0: (subst0 i v t1 t0)).(or3_intro0
47 (land (eq C c1 c1) (subst0 i v t1 t0)) (land (eq T t1 t0) (csubst0 i v c1
48 c1)) (land (subst0 i v t1 t0) (csubst0 i v c1 c1)) (conj (eq C c1 c1) (subst0
49 i v t1 t0) (refl_equal C c1) H0)))) (\lambda (c0: C).(\lambda (H0: (csubst0 i
50 v c1 c0)).(or3_intro1 (land (eq C c1 c0) (subst0 i v t1 t1)) (land (eq T t1
51 t1) (csubst0 i v c1 c0)) (land (subst0 i v t1 t1) (csubst0 i v c1 c0)) (conj
52 (eq T t1 t1) (csubst0 i v c1 c0) (refl_equal T t1) H0)))) (\lambda (t0:
53 T).(\lambda (H0: (subst0 i v t1 t0)).(\lambda (c0: C).(\lambda (H1: (csubst0
54 i v c1 c0)).(or3_intro2 (land (eq C c1 c0) (subst0 i v t1 t0)) (land (eq T t1
55 t0) (csubst0 i v c1 c0)) (land (subst0 i v t1 t0) (csubst0 i v c1 c0)) (conj
56 (subst0 i v t1 t0) (csubst0 i v c1 c0) H0 H1)))))) c2 t2 H))))))).