1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 include "basic_1/pr0/subst0.ma".
19 include "basic_1/subst1/fwd.ma".
22 \forall (u1: T).(\forall (u2: T).((pr0 u1 u2) \to (\forall (t1: T).(\forall
23 (t2: T).((pr0 t1 t2) \to (\forall (w: T).((subst1 O u2 t2 w) \to (pr0 (THead
24 (Bind Abbr) u1 t1) (THead (Bind Abbr) u2 w)))))))))
26 \lambda (u1: T).(\lambda (u2: T).(\lambda (H: (pr0 u1 u2)).(\lambda (t1:
27 T).(\lambda (t2: T).(\lambda (H0: (pr0 t1 t2)).(\lambda (w: T).(\lambda (H1:
28 (subst1 O u2 t2 w)).(subst1_ind O u2 t2 (\lambda (t: T).(pr0 (THead (Bind
29 Abbr) u1 t1) (THead (Bind Abbr) u2 t))) (pr0_comp u1 u2 H t1 t2 H0 (Bind
30 Abbr)) (\lambda (t0: T).(\lambda (H2: (subst0 O u2 t2 t0)).(pr0_delta u1 u2 H
31 t1 t2 H0 t0 H2))) w H1)))))))).
33 lemma pr0_subst1_back:
34 \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst1
35 i u2 t1 t2) \to (\forall (u1: T).((pr0 u1 u2) \to (ex2 T (\lambda (t:
36 T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t2)))))))))
38 \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda
39 (H: (subst1 i u2 t1 t2)).(subst1_ind i u2 t1 (\lambda (t: T).(\forall (u1:
40 T).((pr0 u1 u2) \to (ex2 T (\lambda (t0: T).(subst1 i u1 t1 t0)) (\lambda
41 (t0: T).(pr0 t0 t)))))) (\lambda (u1: T).(\lambda (_: (pr0 u1 u2)).(ex_intro2
42 T (\lambda (t: T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t1)) t1
43 (subst1_refl i u1 t1) (pr0_refl t1)))) (\lambda (t0: T).(\lambda (H0: (subst0
44 i u2 t1 t0)).(\lambda (u1: T).(\lambda (H1: (pr0 u1 u2)).(ex2_ind T (\lambda
45 (t: T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t t0)) (ex2 T (\lambda (t:
46 T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t0))) (\lambda (x: T).(\lambda
47 (H2: (subst0 i u1 t1 x)).(\lambda (H3: (pr0 x t0)).(ex_intro2 T (\lambda (t:
48 T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t0)) x (subst1_single i u1 t1 x
49 H2) H3)))) (pr0_subst0_back u2 t1 t0 i H0 u1 H1)))))) t2 H))))).
52 \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst1
53 i u2 t1 t2) \to (\forall (u1: T).((pr0 u2 u1) \to (ex2 T (\lambda (t:
54 T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t2 t)))))))))
56 \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda
57 (H: (subst1 i u2 t1 t2)).(subst1_ind i u2 t1 (\lambda (t: T).(\forall (u1:
58 T).((pr0 u2 u1) \to (ex2 T (\lambda (t0: T).(subst1 i u1 t1 t0)) (\lambda
59 (t0: T).(pr0 t t0)))))) (\lambda (u1: T).(\lambda (_: (pr0 u2 u1)).(ex_intro2
60 T (\lambda (t: T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t1 t)) t1
61 (subst1_refl i u1 t1) (pr0_refl t1)))) (\lambda (t0: T).(\lambda (H0: (subst0
62 i u2 t1 t0)).(\lambda (u1: T).(\lambda (H1: (pr0 u2 u1)).(ex2_ind T (\lambda
63 (t: T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t0 t)) (ex2 T (\lambda (t:
64 T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t0 t))) (\lambda (x: T).(\lambda
65 (H2: (subst0 i u1 t1 x)).(\lambda (H3: (pr0 t0 x)).(ex_intro2 T (\lambda (t:
66 T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t0 t)) x (subst1_single i u1 t1 x
67 H2) H3)))) (pr0_subst0_fwd u2 t1 t0 i H0 u1 H1)))))) t2 H))))).
70 \forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (\forall (v1: T).(\forall
71 (w1: T).(\forall (i: nat).((subst1 i v1 t1 w1) \to (\forall (v2: T).((pr0 v1
72 v2) \to (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst1 i v2 t2
75 \lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr0 t1 t2)).(\lambda (v1:
76 T).(\lambda (w1: T).(\lambda (i: nat).(\lambda (H0: (subst1 i v1 t1
77 w1)).(subst1_ind i v1 t1 (\lambda (t: T).(\forall (v2: T).((pr0 v1 v2) \to
78 (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst1 i v2 t2 w2))))))
79 (\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(ex_intro2 T (\lambda (w2: T).(pr0
80 t1 w2)) (\lambda (w2: T).(subst1 i v2 t2 w2)) t2 H (subst1_refl i v2 t2))))
81 (\lambda (t0: T).(\lambda (H1: (subst0 i v1 t1 t0)).(\lambda (v2: T).(\lambda
82 (H2: (pr0 v1 v2)).(or_ind (pr0 t0 t2) (ex2 T (\lambda (w2: T).(pr0 t0 w2))
83 (\lambda (w2: T).(subst0 i v2 t2 w2))) (ex2 T (\lambda (w2: T).(pr0 t0 w2))
84 (\lambda (w2: T).(subst1 i v2 t2 w2))) (\lambda (H3: (pr0 t0 t2)).(ex_intro2
85 T (\lambda (w2: T).(pr0 t0 w2)) (\lambda (w2: T).(subst1 i v2 t2 w2)) t2 H3
86 (subst1_refl i v2 t2))) (\lambda (H3: (ex2 T (\lambda (w2: T).(pr0 t0 w2))
87 (\lambda (w2: T).(subst0 i v2 t2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 t0
88 w2)) (\lambda (w2: T).(subst0 i v2 t2 w2)) (ex2 T (\lambda (w2: T).(pr0 t0
89 w2)) (\lambda (w2: T).(subst1 i v2 t2 w2))) (\lambda (x: T).(\lambda (H4:
90 (pr0 t0 x)).(\lambda (H5: (subst0 i v2 t2 x)).(ex_intro2 T (\lambda (w2:
91 T).(pr0 t0 w2)) (\lambda (w2: T).(subst1 i v2 t2 w2)) x H4 (subst1_single i
92 v2 t2 x H5))))) H3)) (pr0_subst0 t1 t2 H v1 t0 i H1 v2 H2)))))) w1 H0))))))).