]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_1/sc3/arity.ma
updated probe and matitadep
[helm.git] / matita / matita / contribs / lambdadelta / basic_1 / sc3 / arity.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 (* This file was automatically generated: do not edit *********************)
16
17 include "basic_1/csubc/arity.ma".
18
19 include "basic_1/csubc/getl.ma".
20
21 include "basic_1/csubc/drop1.ma".
22
23 include "basic_1/csubc/props.ma".
24
25 lemma sc3_arity_csubc:
26  \forall (g: G).(\forall (c1: C).(\forall (t: T).(\forall (a: A).((arity g c1 
27 t a) \to (\forall (d1: C).(\forall (is: PList).((drop1 is d1 c1) \to (\forall 
28 (c2: C).((csubc g d1 c2) \to (sc3 g a c2 (lift1 is t)))))))))))
29 \def
30  \lambda (g: G).(\lambda (c1: C).(\lambda (t: T).(\lambda (a: A).(\lambda (H: 
31 (arity g c1 t a)).(arity_ind g (\lambda (c: C).(\lambda (t0: T).(\lambda (a0: 
32 A).(\forall (d1: C).(\forall (is: PList).((drop1 is d1 c) \to (\forall (c2: 
33 C).((csubc g d1 c2) \to (sc3 g a0 c2 (lift1 is t0)))))))))) (\lambda (c: 
34 C).(\lambda (n: nat).(\lambda (d1: C).(\lambda (is: PList).(\lambda (_: 
35 (drop1 is d1 c)).(\lambda (c2: C).(\lambda (_: (csubc g d1 c2)).(eq_ind_r T 
36 (TSort n) (\lambda (t0: T).(land (arity g c2 t0 (ASort O n)) (sn3 c2 t0))) 
37 (conj (arity g c2 (TSort n) (ASort O n)) (sn3 c2 (TSort n)) (arity_sort g c2 
38 n) (sn3_nf2 c2 (TSort n) (nf2_sort c2 n))) (lift1 is (TSort n)) (lift1_sort n 
39 is))))))))) (\lambda (c: C).(\lambda (d: C).(\lambda (u: T).(\lambda (i: 
40 nat).(\lambda (H0: (getl i c (CHead d (Bind Abbr) u))).(\lambda (a0: 
41 A).(\lambda (_: (arity g d u a0)).(\lambda (H2: ((\forall (d1: C).(\forall 
42 (is: PList).((drop1 is d1 d) \to (\forall (c2: C).((csubc g d1 c2) \to (sc3 g 
43 a0 c2 (lift1 is u))))))))).(\lambda (d1: C).(\lambda (is: PList).(\lambda 
44 (H3: (drop1 is d1 c)).(\lambda (c2: C).(\lambda (H4: (csubc g d1 c2)).(let 
45 H_x \def (drop1_getl_trans is c d1 H3 Abbr d u i H0) in (let H5 \def H_x in 
46 (ex2_ind C (\lambda (e2: C).(drop1 (ptrans is i) e2 d)) (\lambda (e2: 
47 C).(getl (trans is i) d1 (CHead e2 (Bind Abbr) (lift1 (ptrans is i) u)))) 
48 (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x: C).(\lambda (_: (drop1 
49 (ptrans is i) x d)).(\lambda (H7: (getl (trans is i) d1 (CHead x (Bind Abbr) 
50 (lift1 (ptrans is i) u)))).(let H_x0 \def (csubc_getl_conf g d1 (CHead x 
51 (Bind Abbr) (lift1 (ptrans is i) u)) (trans is i) H7 c2 H4) in (let H8 \def 
52 H_x0 in (ex2_ind C (\lambda (e2: C).(getl (trans is i) c2 e2)) (\lambda (e2: 
53 C).(csubc g (CHead x (Bind Abbr) (lift1 (ptrans is i) u)) e2)) (sc3 g a0 c2 
54 (lift1 is (TLRef i))) (\lambda (x0: C).(\lambda (H9: (getl (trans is i) c2 
55 x0)).(\lambda (H10: (csubc g (CHead x (Bind Abbr) (lift1 (ptrans is i) u)) 
56 x0)).(let H_x1 \def (csubc_gen_head_l g x x0 (lift1 (ptrans is i) u) (Bind 
57 Abbr) H10) in (let H11 \def H_x1 in (or3_ind (ex2 C (\lambda (c3: C).(eq C x0 
58 (CHead c3 (Bind Abbr) (lift1 (ptrans is i) u)))) (\lambda (c3: C).(csubc g x 
59 c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K 
60 (Bind Abbr) (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_: 
61 A).(eq C x0 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_: 
62 T).(\lambda (_: A).(csubc g x c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda 
63 (a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans is i) u))))) (\lambda (c3: 
64 C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3 w))))) (ex4_3 B C T (\lambda 
65 (b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C x0 (CHead c3 (Bind b) v2))))) 
66 (\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K (Bind Abbr) (Bind 
67 Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b 
68 Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g x c3))))) 
69 (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (H12: (ex2 C (\lambda (c3: C).(eq 
70 C x0 (CHead c3 (Bind Abbr) (lift1 (ptrans is i) u)))) (\lambda (c3: C).(csubc 
71 g x c3)))).(ex2_ind C (\lambda (c3: C).(eq C x0 (CHead c3 (Bind Abbr) (lift1 
72 (ptrans is i) u)))) (\lambda (c3: C).(csubc g x c3)) (sc3 g a0 c2 (lift1 is 
73 (TLRef i))) (\lambda (x1: C).(\lambda (H13: (eq C x0 (CHead x1 (Bind Abbr) 
74 (lift1 (ptrans is i) u)))).(\lambda (_: (csubc g x x1)).(let H15 \def (eq_ind 
75 C x0 (\lambda (c0: C).(getl (trans is i) c2 c0)) H9 (CHead x1 (Bind Abbr) 
76 (lift1 (ptrans is i) u)) H13) in (let H_y \def (sc3_abbr g a0 TNil) in 
77 (eq_ind_r T (TLRef (trans is i)) (\lambda (t0: T).(sc3 g a0 c2 t0)) (H_y 
78 (trans is i) x1 (lift1 (ptrans is i) u) c2 (eq_ind T (lift1 is (lift (S i) O 
79 u)) (\lambda (t0: T).(sc3 g a0 c2 t0)) (eq_ind T (lift1 (PConsTail is (S i) 
80 O) u) (\lambda (t0: T).(sc3 g a0 c2 t0)) (H2 d1 (PConsTail is (S i) O) 
81 (drop1_cons_tail c d (S i) O (getl_drop Abbr c d u i H0) is d1 H3) c2 H4) 
82 (lift1 is (lift (S i) O u)) (lift1_cons_tail u (S i) O is)) (lift (S (trans 
83 is i)) O (lift1 (ptrans is i) u)) (lift1_free is i u)) H15) (lift1 is (TLRef 
84 i)) (lift1_lref is i))))))) H12)) (\lambda (H12: (ex5_3 C T A (\lambda (_: 
85 C).(\lambda (_: T).(\lambda (_: A).(eq K (Bind Abbr) (Bind Abst))))) (\lambda 
86 (c3: C).(\lambda (w: T).(\lambda (_: A).(eq C x0 (CHead c3 (Bind Abbr) w))))) 
87 (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g x c3)))) (\lambda 
88 (_: C).(\lambda (_: T).(\lambda (a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans 
89 is i) u))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3 
90 w)))))).(ex5_3_ind C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq 
91 K (Bind Abbr) (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_: 
92 A).(eq C x0 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_: 
93 T).(\lambda (_: A).(csubc g x c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda 
94 (a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans is i) u))))) (\lambda (c3: 
95 C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3 w)))) (sc3 g a0 c2 (lift1 is 
96 (TLRef i))) (\lambda (x1: C).(\lambda (x2: T).(\lambda (x3: A).(\lambda (H13: 
97 (eq K (Bind Abbr) (Bind Abst))).(\lambda (H14: (eq C x0 (CHead x1 (Bind Abbr) 
98 x2))).(\lambda (_: (csubc g x x1)).(\lambda (_: (sc3 g (asucc g x3) x (lift1 
99 (ptrans is i) u))).(\lambda (_: (sc3 g x3 x1 x2)).(let H18 \def (eq_ind C x0 
100 (\lambda (c0: C).(getl (trans is i) c2 c0)) H9 (CHead x1 (Bind Abbr) x2) H14) 
101 in (let H19 \def (eq_ind K (Bind Abbr) (\lambda (ee: K).(match ee with [(Bind 
102 b) \Rightarrow (match b with [Abbr \Rightarrow True | Abst \Rightarrow False 
103 | Void \Rightarrow False]) | (Flat _) \Rightarrow False])) I (Bind Abst) H13) 
104 in (False_ind (sc3 g a0 c2 (lift1 is (TLRef i))) H19))))))))))) H12)) 
105 (\lambda (H12: (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2: 
106 T).(eq C x0 (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_: 
107 C).(\lambda (_: T).(eq K (Bind Abbr) (Bind Void))))) (\lambda (b: B).(\lambda 
108 (_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3: 
109 C).(\lambda (_: T).(csubc g x c3)))))).(ex4_3_ind B C T (\lambda (b: 
110 B).(\lambda (c3: C).(\lambda (v2: T).(eq C x0 (CHead c3 (Bind b) v2))))) 
111 (\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K (Bind Abbr) (Bind 
112 Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b 
113 Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g x c3)))) 
114 (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x1: B).(\lambda (x2: C).(\lambda 
115 (x3: T).(\lambda (H13: (eq C x0 (CHead x2 (Bind x1) x3))).(\lambda (H14: (eq 
116 K (Bind Abbr) (Bind Void))).(\lambda (_: (not (eq B x1 Void))).(\lambda (_: 
117 (csubc g x x2)).(let H17 \def (eq_ind C x0 (\lambda (c0: C).(getl (trans is 
118 i) c2 c0)) H9 (CHead x2 (Bind x1) x3) H13) in (let H18 \def (eq_ind K (Bind 
119 Abbr) (\lambda (ee: K).(match ee with [(Bind b) \Rightarrow (match b with 
120 [Abbr \Rightarrow True | Abst \Rightarrow False | Void \Rightarrow False]) | 
121 (Flat _) \Rightarrow False])) I (Bind Void) H14) in (False_ind (sc3 g a0 c2 
122 (lift1 is (TLRef i))) H18)))))))))) H12)) H11)))))) H8)))))) 
123 H5)))))))))))))))) (\lambda (c: C).(\lambda (d: C).(\lambda (u: T).(\lambda 
124 (i: nat).(\lambda (H0: (getl i c (CHead d (Bind Abst) u))).(\lambda (a0: 
125 A).(\lambda (H1: (arity g d u (asucc g a0))).(\lambda (_: ((\forall (d1: 
126 C).(\forall (is: PList).((drop1 is d1 d) \to (\forall (c2: C).((csubc g d1 
127 c2) \to (sc3 g (asucc g a0) c2 (lift1 is u))))))))).(\lambda (d1: C).(\lambda 
128 (is: PList).(\lambda (H3: (drop1 is d1 c)).(\lambda (c2: C).(\lambda (H4: 
129 (csubc g d1 c2)).(let H5 \def H0 in (let H_x \def (drop1_getl_trans is c d1 
130 H3 Abst d u i H5) in (let H6 \def H_x in (ex2_ind C (\lambda (e2: C).(drop1 
131 (ptrans is i) e2 d)) (\lambda (e2: C).(getl (trans is i) d1 (CHead e2 (Bind 
132 Abst) (lift1 (ptrans is i) u)))) (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda 
133 (x: C).(\lambda (H7: (drop1 (ptrans is i) x d)).(\lambda (H8: (getl (trans is 
134 i) d1 (CHead x (Bind Abst) (lift1 (ptrans is i) u)))).(let H_x0 \def 
135 (csubc_getl_conf g d1 (CHead x (Bind Abst) (lift1 (ptrans is i) u)) (trans is 
136 i) H8 c2 H4) in (let H9 \def H_x0 in (ex2_ind C (\lambda (e2: C).(getl (trans 
137 is i) c2 e2)) (\lambda (e2: C).(csubc g (CHead x (Bind Abst) (lift1 (ptrans 
138 is i) u)) e2)) (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x0: C).(\lambda 
139 (H10: (getl (trans is i) c2 x0)).(\lambda (H11: (csubc g (CHead x (Bind Abst) 
140 (lift1 (ptrans is i) u)) x0)).(let H_x1 \def (csubc_gen_head_l g x x0 (lift1 
141 (ptrans is i) u) (Bind Abst) H11) in (let H12 \def H_x1 in (or3_ind (ex2 C 
142 (\lambda (c3: C).(eq C x0 (CHead c3 (Bind Abst) (lift1 (ptrans is i) u)))) 
143 (\lambda (c3: C).(csubc g x c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: 
144 T).(\lambda (_: A).(eq K (Bind Abst) (Bind Abst))))) (\lambda (c3: 
145 C).(\lambda (w: T).(\lambda (_: A).(eq C x0 (CHead c3 (Bind Abbr) w))))) 
146 (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g x c3)))) (\lambda 
147 (_: C).(\lambda (_: T).(\lambda (a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans 
148 is i) u))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3 
149 w))))) (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C 
150 x0 (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: 
151 T).(eq K (Bind Abst) (Bind Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda 
152 (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: 
153 T).(csubc g x c3))))) (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (H13: (ex2 
154 C (\lambda (c3: C).(eq C x0 (CHead c3 (Bind Abst) (lift1 (ptrans is i) u)))) 
155 (\lambda (c3: C).(csubc g x c3)))).(ex2_ind C (\lambda (c3: C).(eq C x0 
156 (CHead c3 (Bind Abst) (lift1 (ptrans is i) u)))) (\lambda (c3: C).(csubc g x 
157 c3)) (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x1: C).(\lambda (H14: (eq C 
158 x0 (CHead x1 (Bind Abst) (lift1 (ptrans is i) u)))).(\lambda (_: (csubc g x 
159 x1)).(let H16 \def (eq_ind C x0 (\lambda (c0: C).(getl (trans is i) c2 c0)) 
160 H10 (CHead x1 (Bind Abst) (lift1 (ptrans is i) u)) H14) in (let H_y \def 
161 (sc3_abst g a0 TNil) in (eq_ind_r T (TLRef (trans is i)) (\lambda (t0: 
162 T).(sc3 g a0 c2 t0)) (H_y c2 (trans is i) (csubc_arity_conf g d1 c2 H4 (TLRef 
163 (trans is i)) a0 (eq_ind T (lift1 is (TLRef i)) (\lambda (t0: T).(arity g d1 
164 t0 a0)) (arity_lift1 g a0 c is d1 (TLRef i) H3 (arity_abst g c d u i H0 a0 
165 H1)) (TLRef (trans is i)) (lift1_lref is i))) (nf2_lref_abst c2 x1 (lift1 
166 (ptrans is i) u) (trans is i) H16) I) (lift1 is (TLRef i)) (lift1_lref is 
167 i))))))) H13)) (\lambda (H13: (ex5_3 C T A (\lambda (_: C).(\lambda (_: 
168 T).(\lambda (_: A).(eq K (Bind Abst) (Bind Abst))))) (\lambda (c3: 
169 C).(\lambda (w: T).(\lambda (_: A).(eq C x0 (CHead c3 (Bind Abbr) w))))) 
170 (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g x c3)))) (\lambda 
171 (_: C).(\lambda (_: T).(\lambda (a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans 
172 is i) u))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3 
173 w)))))).(ex5_3_ind C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq 
174 K (Bind Abst) (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_: 
175 A).(eq C x0 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_: 
176 T).(\lambda (_: A).(csubc g x c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda 
177 (a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans is i) u))))) (\lambda (c3: 
178 C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3 w)))) (sc3 g a0 c2 (lift1 is 
179 (TLRef i))) (\lambda (x1: C).(\lambda (x2: T).(\lambda (x3: A).(\lambda (_: 
180 (eq K (Bind Abst) (Bind Abst))).(\lambda (H15: (eq C x0 (CHead x1 (Bind Abbr) 
181 x2))).(\lambda (_: (csubc g x x1)).(\lambda (H17: (sc3 g (asucc g x3) x 
182 (lift1 (ptrans is i) u))).(\lambda (H18: (sc3 g x3 x1 x2)).(let H19 \def 
183 (eq_ind C x0 (\lambda (c0: C).(getl (trans is i) c2 c0)) H10 (CHead x1 (Bind 
184 Abbr) x2) H15) in (let H_y \def (sc3_abbr g a0 TNil) in (eq_ind_r T (TLRef 
185 (trans is i)) (\lambda (t0: T).(sc3 g a0 c2 t0)) (H_y (trans is i) x1 x2 c2 
186 (let H_y0 \def (arity_lift1 g (asucc g a0) d (ptrans is i) x u H7 H1) in (let 
187 H_y1 \def (sc3_arity_gen g x (lift1 (ptrans is i) u) (asucc g x3) H17) in 
188 (sc3_repl g x3 c2 (lift (S (trans is i)) O x2) (sc3_lift g x3 x1 x2 H18 c2 (S 
189 (trans is i)) O (getl_drop Abbr c2 x1 x2 (trans is i) H19)) a0 (asucc_inj g 
190 x3 a0 (arity_mono g x (lift1 (ptrans is i) u) (asucc g x3) H_y1 (asucc g a0) 
191 H_y0))))) H19) (lift1 is (TLRef i)) (lift1_lref is i)))))))))))) H13)) 
192 (\lambda (H13: (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2: 
193 T).(eq C x0 (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_: 
194 C).(\lambda (_: T).(eq K (Bind Abst) (Bind Void))))) (\lambda (b: B).(\lambda 
195 (_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3: 
196 C).(\lambda (_: T).(csubc g x c3)))))).(ex4_3_ind B C T (\lambda (b: 
197 B).(\lambda (c3: C).(\lambda (v2: T).(eq C x0 (CHead c3 (Bind b) v2))))) 
198 (\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K (Bind Abst) (Bind 
199 Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b 
200 Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g x c3)))) 
201 (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x1: B).(\lambda (x2: C).(\lambda 
202 (x3: T).(\lambda (H14: (eq C x0 (CHead x2 (Bind x1) x3))).(\lambda (H15: (eq 
203 K (Bind Abst) (Bind Void))).(\lambda (_: (not (eq B x1 Void))).(\lambda (_: 
204 (csubc g x x2)).(let H18 \def (eq_ind C x0 (\lambda (c0: C).(getl (trans is 
205 i) c2 c0)) H10 (CHead x2 (Bind x1) x3) H14) in (let H19 \def (eq_ind K (Bind 
206 Abst) (\lambda (ee: K).(match ee with [(Bind b) \Rightarrow (match b with 
207 [Abbr \Rightarrow False | Abst \Rightarrow True | Void \Rightarrow False]) | 
208 (Flat _) \Rightarrow False])) I (Bind Void) H15) in (False_ind (sc3 g a0 c2 
209 (lift1 is (TLRef i))) H19)))))))))) H13)) H12)))))) H9)))))) 
210 H6))))))))))))))))) (\lambda (b: B).(\lambda (H0: (not (eq B b 
211 Abst))).(\lambda (c: C).(\lambda (u: T).(\lambda (a1: A).(\lambda (_: (arity 
212 g c u a1)).(\lambda (H2: ((\forall (d1: C).(\forall (is: PList).((drop1 is d1 
213 c) \to (\forall (c2: C).((csubc g d1 c2) \to (sc3 g a1 c2 (lift1 is 
214 u))))))))).(\lambda (t0: T).(\lambda (a2: A).(\lambda (_: (arity g (CHead c 
215 (Bind b) u) t0 a2)).(\lambda (H4: ((\forall (d1: C).(\forall (is: 
216 PList).((drop1 is d1 (CHead c (Bind b) u)) \to (\forall (c2: C).((csubc g d1 
217 c2) \to (sc3 g a2 c2 (lift1 is t0))))))))).(\lambda (d1: C).(\lambda (is: 
218 PList).(\lambda (H5: (drop1 is d1 c)).(\lambda (c2: C).(\lambda (H6: (csubc g 
219 d1 c2)).(let H_y \def (sc3_bind g b H0 a1 a2 TNil) in (eq_ind_r T (THead 
220 (Bind b) (lift1 is u) (lift1 (Ss is) t0)) (\lambda (t1: T).(sc3 g a2 c2 t1)) 
221 (H_y c2 (lift1 is u) (lift1 (Ss is) t0) (H4 (CHead d1 (Bind b) (lift1 is u)) 
222 (Ss is) (drop1_skip_bind b c is d1 u H5) (CHead c2 (Bind b) (lift1 is u)) 
223 (csubc_head g d1 c2 H6 (Bind b) (lift1 is u))) (H2 d1 is H5 c2 H6)) (lift1 is 
224 (THead (Bind b) u t0)) (lift1_bind b is u t0))))))))))))))))))) (\lambda (c: 
225 C).(\lambda (u: T).(\lambda (a1: A).(\lambda (H0: (arity g c u (asucc g 
226 a1))).(\lambda (H1: ((\forall (d1: C).(\forall (is: PList).((drop1 is d1 c) 
227 \to (\forall (c2: C).((csubc g d1 c2) \to (sc3 g (asucc g a1) c2 (lift1 is 
228 u))))))))).(\lambda (t0: T).(\lambda (a2: A).(\lambda (H2: (arity g (CHead c 
229 (Bind Abst) u) t0 a2)).(\lambda (H3: ((\forall (d1: C).(\forall (is: 
230 PList).((drop1 is d1 (CHead c (Bind Abst) u)) \to (\forall (c2: C).((csubc g 
231 d1 c2) \to (sc3 g a2 c2 (lift1 is t0))))))))).(\lambda (d1: C).(\lambda (is: 
232 PList).(\lambda (H4: (drop1 is d1 c)).(\lambda (c2: C).(\lambda (H5: (csubc g 
233 d1 c2)).(eq_ind_r T (THead (Bind Abst) (lift1 is u) (lift1 (Ss is) t0)) 
234 (\lambda (t1: T).(land (arity g c2 t1 (AHead a1 a2)) (\forall (d: C).(\forall 
235 (w: T).((sc3 g a1 d w) \to (\forall (is0: PList).((drop1 is0 d c2) \to (sc3 g 
236 a2 d (THead (Flat Appl) w (lift1 is0 t1)))))))))) (conj (arity g c2 (THead 
237 (Bind Abst) (lift1 is u) (lift1 (Ss is) t0)) (AHead a1 a2)) (\forall (d: 
238 C).(\forall (w: T).((sc3 g a1 d w) \to (\forall (is0: PList).((drop1 is0 d 
239 c2) \to (sc3 g a2 d (THead (Flat Appl) w (lift1 is0 (THead (Bind Abst) (lift1 
240 is u) (lift1 (Ss is) t0)))))))))) (csubc_arity_conf g d1 c2 H5 (THead (Bind 
241 Abst) (lift1 is u) (lift1 (Ss is) t0)) (AHead a1 a2) (arity_head g d1 (lift1 
242 is u) a1 (arity_lift1 g (asucc g a1) c is d1 u H4 H0) (lift1 (Ss is) t0) a2 
243 (arity_lift1 g a2 (CHead c (Bind Abst) u) (Ss is) (CHead d1 (Bind Abst) 
244 (lift1 is u)) t0 (drop1_skip_bind Abst c is d1 u H4) H2))) (\lambda (d: 
245 C).(\lambda (w: T).(\lambda (H6: (sc3 g a1 d w)).(\lambda (is0: 
246 PList).(\lambda (H7: (drop1 is0 d c2)).(eq_ind_r T (THead (Bind Abst) (lift1 
247 is0 (lift1 is u)) (lift1 (Ss is0) (lift1 (Ss is) t0))) (\lambda (t1: T).(sc3 
248 g a2 d (THead (Flat Appl) w t1))) (let H8 \def (sc3_appl g a1 a2 TNil) in (H8 
249 d w (lift1 (Ss is0) (lift1 (Ss is) t0)) (let H_y \def (sc3_bind g Abbr 
250 not_abbr_abst a1 a2 TNil) in (H_y d w (lift1 (Ss is0) (lift1 (Ss is) t0)) 
251 (let H_x \def (csubc_drop1_conf_rev g is0 d c2 H7 d1 H5) in (let H9 \def H_x 
252 in (ex2_ind C (\lambda (c3: C).(drop1 is0 c3 d1)) (\lambda (c3: C).(csubc g 
253 c3 d)) (sc3 g a2 (CHead d (Bind Abbr) w) (lift1 (Ss is0) (lift1 (Ss is) t0))) 
254 (\lambda (x: C).(\lambda (H10: (drop1 is0 x d1)).(\lambda (H11: (csubc g x 
255 d)).(eq_ind_r T (lift1 (papp (Ss is0) (Ss is)) t0) (\lambda (t1: T).(sc3 g a2 
256 (CHead d (Bind Abbr) w) t1)) (eq_ind_r PList (Ss (papp is0 is)) (\lambda (p: 
257 PList).(sc3 g a2 (CHead d (Bind Abbr) w) (lift1 p t0))) (H3 (CHead x (Bind 
258 Abst) (lift1 (papp is0 is) u)) (Ss (papp is0 is)) (drop1_skip_bind Abst c 
259 (papp is0 is) x u (drop1_trans is0 x d1 H10 is c H4)) (CHead d (Bind Abbr) w) 
260 (csubc_abst g x d H11 (lift1 (papp is0 is) u) a1 (H1 x (papp is0 is) 
261 (drop1_trans is0 x d1 H10 is c H4) x (csubc_refl g x)) w H6)) (papp (Ss is0) 
262 (Ss is)) (papp_ss is0 is)) (lift1 (Ss is0) (lift1 (Ss is) t0)) (lift1_lift1 
263 (Ss is0) (Ss is) t0))))) H9))) H6)) H6 (lift1 is0 (lift1 is u)) (sc3_lift1 g 
264 c2 (asucc g a1) is0 d (lift1 is u) (H1 d1 is H4 c2 H5) H7))) (lift1 is0 
265 (THead (Bind Abst) (lift1 is u) (lift1 (Ss is) t0))) (lift1_bind Abst is0 
266 (lift1 is u) (lift1 (Ss is) t0))))))))) (lift1 is (THead (Bind Abst) u t0)) 
267 (lift1_bind Abst is u t0)))))))))))))))) (\lambda (c: C).(\lambda (u: 
268 T).(\lambda (a1: A).(\lambda (_: (arity g c u a1)).(\lambda (H1: ((\forall 
269 (d1: C).(\forall (is: PList).((drop1 is d1 c) \to (\forall (c2: C).((csubc g 
270 d1 c2) \to (sc3 g a1 c2 (lift1 is u))))))))).(\lambda (t0: T).(\lambda (a2: 
271 A).(\lambda (_: (arity g c t0 (AHead a1 a2))).(\lambda (H3: ((\forall (d1: 
272 C).(\forall (is: PList).((drop1 is d1 c) \to (\forall (c2: C).((csubc g d1 
273 c2) \to (sc3 g (AHead a1 a2) c2 (lift1 is t0))))))))).(\lambda (d1: 
274 C).(\lambda (is: PList).(\lambda (H4: (drop1 is d1 c)).(\lambda (c2: 
275 C).(\lambda (H5: (csubc g d1 c2)).(let H_y \def (H1 d1 is H4 c2 H5) in (let 
276 H_y0 \def (H3 d1 is H4 c2 H5) in (let H6 \def H_y0 in (land_ind (arity g c2 
277 (lift1 is t0) (AHead a1 a2)) (\forall (d: C).(\forall (w: T).((sc3 g a1 d w) 
278 \to (\forall (is0: PList).((drop1 is0 d c2) \to (sc3 g a2 d (THead (Flat 
279 Appl) w (lift1 is0 (lift1 is t0))))))))) (sc3 g a2 c2 (lift1 is (THead (Flat 
280 Appl) u t0))) (\lambda (_: (arity g c2 (lift1 is t0) (AHead a1 a2))).(\lambda 
281 (H8: ((\forall (d: C).(\forall (w: T).((sc3 g a1 d w) \to (\forall (is0: 
282 PList).((drop1 is0 d c2) \to (sc3 g a2 d (THead (Flat Appl) w (lift1 is0 
283 (lift1 is t0))))))))))).(let H_y1 \def (H8 c2 (lift1 is u) H_y PNil) in 
284 (eq_ind_r T (THead (Flat Appl) (lift1 is u) (lift1 is t0)) (\lambda (t1: 
285 T).(sc3 g a2 c2 t1)) (H_y1 (drop1_nil c2)) (lift1 is (THead (Flat Appl) u 
286 t0)) (lift1_flat Appl is u t0))))) H6)))))))))))))))))) (\lambda (c: 
287 C).(\lambda (u: T).(\lambda (a0: A).(\lambda (_: (arity g c u (asucc g 
288 a0))).(\lambda (H1: ((\forall (d1: C).(\forall (is: PList).((drop1 is d1 c) 
289 \to (\forall (c2: C).((csubc g d1 c2) \to (sc3 g (asucc g a0) c2 (lift1 is 
290 u))))))))).(\lambda (t0: T).(\lambda (_: (arity g c t0 a0)).(\lambda (H3: 
291 ((\forall (d1: C).(\forall (is: PList).((drop1 is d1 c) \to (\forall (c2: 
292 C).((csubc g d1 c2) \to (sc3 g a0 c2 (lift1 is t0))))))))).(\lambda (d1: 
293 C).(\lambda (is: PList).(\lambda (H4: (drop1 is d1 c)).(\lambda (c2: 
294 C).(\lambda (H5: (csubc g d1 c2)).(let H_y \def (sc3_cast g a0 TNil) in 
295 (eq_ind_r T (THead (Flat Cast) (lift1 is u) (lift1 is t0)) (\lambda (t1: 
296 T).(sc3 g a0 c2 t1)) (H_y c2 (lift1 is u) (H1 d1 is H4 c2 H5) (lift1 is t0) 
297 (H3 d1 is H4 c2 H5)) (lift1 is (THead (Flat Cast) u t0)) (lift1_flat Cast is 
298 u t0)))))))))))))))) (\lambda (c: C).(\lambda (t0: T).(\lambda (a1: 
299 A).(\lambda (_: (arity g c t0 a1)).(\lambda (H1: ((\forall (d1: C).(\forall 
300 (is: PList).((drop1 is d1 c) \to (\forall (c2: C).((csubc g d1 c2) \to (sc3 g 
301 a1 c2 (lift1 is t0))))))))).(\lambda (a2: A).(\lambda (H2: (leq g a1 
302 a2)).(\lambda (d1: C).(\lambda (is: PList).(\lambda (H3: (drop1 is d1 
303 c)).(\lambda (c2: C).(\lambda (H4: (csubc g d1 c2)).(sc3_repl g a1 c2 (lift1 
304 is t0) (H1 d1 is H3 c2 H4) a2 H2))))))))))))) c1 t a H))))).
305
306 lemma sc3_arity:
307  \forall (g: G).(\forall (c: C).(\forall (t: T).(\forall (a: A).((arity g c t 
308 a) \to (sc3 g a c t)))))
309 \def
310  \lambda (g: G).(\lambda (c: C).(\lambda (t: T).(\lambda (a: A).(\lambda (H: 
311 (arity g c t a)).(let H_y \def (sc3_arity_csubc g c t a H c PNil) in (H_y 
312 (drop1_nil c) c (csubc_refl g c))))))).
313