1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 include "basic_1/csubc/arity.ma".
19 include "basic_1/csubc/getl.ma".
21 include "basic_1/csubc/drop1.ma".
23 include "basic_1/csubc/props.ma".
25 lemma sc3_arity_csubc:
26 \forall (g: G).(\forall (c1: C).(\forall (t: T).(\forall (a: A).((arity g c1
27 t a) \to (\forall (d1: C).(\forall (is: PList).((drop1 is d1 c1) \to (\forall
28 (c2: C).((csubc g d1 c2) \to (sc3 g a c2 (lift1 is t)))))))))))
30 \lambda (g: G).(\lambda (c1: C).(\lambda (t: T).(\lambda (a: A).(\lambda (H:
31 (arity g c1 t a)).(arity_ind g (\lambda (c: C).(\lambda (t0: T).(\lambda (a0:
32 A).(\forall (d1: C).(\forall (is: PList).((drop1 is d1 c) \to (\forall (c2:
33 C).((csubc g d1 c2) \to (sc3 g a0 c2 (lift1 is t0)))))))))) (\lambda (c:
34 C).(\lambda (n: nat).(\lambda (d1: C).(\lambda (is: PList).(\lambda (_:
35 (drop1 is d1 c)).(\lambda (c2: C).(\lambda (_: (csubc g d1 c2)).(eq_ind_r T
36 (TSort n) (\lambda (t0: T).(land (arity g c2 t0 (ASort O n)) (sn3 c2 t0)))
37 (conj (arity g c2 (TSort n) (ASort O n)) (sn3 c2 (TSort n)) (arity_sort g c2
38 n) (sn3_nf2 c2 (TSort n) (nf2_sort c2 n))) (lift1 is (TSort n)) (lift1_sort n
39 is))))))))) (\lambda (c: C).(\lambda (d: C).(\lambda (u: T).(\lambda (i:
40 nat).(\lambda (H0: (getl i c (CHead d (Bind Abbr) u))).(\lambda (a0:
41 A).(\lambda (_: (arity g d u a0)).(\lambda (H2: ((\forall (d1: C).(\forall
42 (is: PList).((drop1 is d1 d) \to (\forall (c2: C).((csubc g d1 c2) \to (sc3 g
43 a0 c2 (lift1 is u))))))))).(\lambda (d1: C).(\lambda (is: PList).(\lambda
44 (H3: (drop1 is d1 c)).(\lambda (c2: C).(\lambda (H4: (csubc g d1 c2)).(let
45 H_x \def (drop1_getl_trans is c d1 H3 Abbr d u i H0) in (let H5 \def H_x in
46 (ex2_ind C (\lambda (e2: C).(drop1 (ptrans is i) e2 d)) (\lambda (e2:
47 C).(getl (trans is i) d1 (CHead e2 (Bind Abbr) (lift1 (ptrans is i) u))))
48 (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x: C).(\lambda (_: (drop1
49 (ptrans is i) x d)).(\lambda (H7: (getl (trans is i) d1 (CHead x (Bind Abbr)
50 (lift1 (ptrans is i) u)))).(let H_x0 \def (csubc_getl_conf g d1 (CHead x
51 (Bind Abbr) (lift1 (ptrans is i) u)) (trans is i) H7 c2 H4) in (let H8 \def
52 H_x0 in (ex2_ind C (\lambda (e2: C).(getl (trans is i) c2 e2)) (\lambda (e2:
53 C).(csubc g (CHead x (Bind Abbr) (lift1 (ptrans is i) u)) e2)) (sc3 g a0 c2
54 (lift1 is (TLRef i))) (\lambda (x0: C).(\lambda (H9: (getl (trans is i) c2
55 x0)).(\lambda (H10: (csubc g (CHead x (Bind Abbr) (lift1 (ptrans is i) u))
56 x0)).(let H_x1 \def (csubc_gen_head_l g x x0 (lift1 (ptrans is i) u) (Bind
57 Abbr) H10) in (let H11 \def H_x1 in (or3_ind (ex2 C (\lambda (c3: C).(eq C x0
58 (CHead c3 (Bind Abbr) (lift1 (ptrans is i) u)))) (\lambda (c3: C).(csubc g x
59 c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K
60 (Bind Abbr) (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_:
61 A).(eq C x0 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_:
62 T).(\lambda (_: A).(csubc g x c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda
63 (a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans is i) u))))) (\lambda (c3:
64 C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3 w))))) (ex4_3 B C T (\lambda
65 (b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C x0 (CHead c3 (Bind b) v2)))))
66 (\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K (Bind Abbr) (Bind
67 Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b
68 Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g x c3)))))
69 (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (H12: (ex2 C (\lambda (c3: C).(eq
70 C x0 (CHead c3 (Bind Abbr) (lift1 (ptrans is i) u)))) (\lambda (c3: C).(csubc
71 g x c3)))).(ex2_ind C (\lambda (c3: C).(eq C x0 (CHead c3 (Bind Abbr) (lift1
72 (ptrans is i) u)))) (\lambda (c3: C).(csubc g x c3)) (sc3 g a0 c2 (lift1 is
73 (TLRef i))) (\lambda (x1: C).(\lambda (H13: (eq C x0 (CHead x1 (Bind Abbr)
74 (lift1 (ptrans is i) u)))).(\lambda (_: (csubc g x x1)).(let H15 \def (eq_ind
75 C x0 (\lambda (c0: C).(getl (trans is i) c2 c0)) H9 (CHead x1 (Bind Abbr)
76 (lift1 (ptrans is i) u)) H13) in (let H_y \def (sc3_abbr g a0 TNil) in
77 (eq_ind_r T (TLRef (trans is i)) (\lambda (t0: T).(sc3 g a0 c2 t0)) (H_y
78 (trans is i) x1 (lift1 (ptrans is i) u) c2 (eq_ind T (lift1 is (lift (S i) O
79 u)) (\lambda (t0: T).(sc3 g a0 c2 t0)) (eq_ind T (lift1 (PConsTail is (S i)
80 O) u) (\lambda (t0: T).(sc3 g a0 c2 t0)) (H2 d1 (PConsTail is (S i) O)
81 (drop1_cons_tail c d (S i) O (getl_drop Abbr c d u i H0) is d1 H3) c2 H4)
82 (lift1 is (lift (S i) O u)) (lift1_cons_tail u (S i) O is)) (lift (S (trans
83 is i)) O (lift1 (ptrans is i) u)) (lift1_free is i u)) H15) (lift1 is (TLRef
84 i)) (lift1_lref is i))))))) H12)) (\lambda (H12: (ex5_3 C T A (\lambda (_:
85 C).(\lambda (_: T).(\lambda (_: A).(eq K (Bind Abbr) (Bind Abst))))) (\lambda
86 (c3: C).(\lambda (w: T).(\lambda (_: A).(eq C x0 (CHead c3 (Bind Abbr) w)))))
87 (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g x c3)))) (\lambda
88 (_: C).(\lambda (_: T).(\lambda (a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans
89 is i) u))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3
90 w)))))).(ex5_3_ind C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq
91 K (Bind Abbr) (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_:
92 A).(eq C x0 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_:
93 T).(\lambda (_: A).(csubc g x c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda
94 (a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans is i) u))))) (\lambda (c3:
95 C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3 w)))) (sc3 g a0 c2 (lift1 is
96 (TLRef i))) (\lambda (x1: C).(\lambda (x2: T).(\lambda (x3: A).(\lambda (H13:
97 (eq K (Bind Abbr) (Bind Abst))).(\lambda (H14: (eq C x0 (CHead x1 (Bind Abbr)
98 x2))).(\lambda (_: (csubc g x x1)).(\lambda (_: (sc3 g (asucc g x3) x (lift1
99 (ptrans is i) u))).(\lambda (_: (sc3 g x3 x1 x2)).(let H18 \def (eq_ind C x0
100 (\lambda (c0: C).(getl (trans is i) c2 c0)) H9 (CHead x1 (Bind Abbr) x2) H14)
101 in (let H19 \def (eq_ind K (Bind Abbr) (\lambda (ee: K).(match ee with [(Bind
102 b) \Rightarrow (match b with [Abbr \Rightarrow True | Abst \Rightarrow False
103 | Void \Rightarrow False]) | (Flat _) \Rightarrow False])) I (Bind Abst) H13)
104 in (False_ind (sc3 g a0 c2 (lift1 is (TLRef i))) H19))))))))))) H12))
105 (\lambda (H12: (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2:
106 T).(eq C x0 (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_:
107 C).(\lambda (_: T).(eq K (Bind Abbr) (Bind Void))))) (\lambda (b: B).(\lambda
108 (_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3:
109 C).(\lambda (_: T).(csubc g x c3)))))).(ex4_3_ind B C T (\lambda (b:
110 B).(\lambda (c3: C).(\lambda (v2: T).(eq C x0 (CHead c3 (Bind b) v2)))))
111 (\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K (Bind Abbr) (Bind
112 Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b
113 Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g x c3))))
114 (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x1: B).(\lambda (x2: C).(\lambda
115 (x3: T).(\lambda (H13: (eq C x0 (CHead x2 (Bind x1) x3))).(\lambda (H14: (eq
116 K (Bind Abbr) (Bind Void))).(\lambda (_: (not (eq B x1 Void))).(\lambda (_:
117 (csubc g x x2)).(let H17 \def (eq_ind C x0 (\lambda (c0: C).(getl (trans is
118 i) c2 c0)) H9 (CHead x2 (Bind x1) x3) H13) in (let H18 \def (eq_ind K (Bind
119 Abbr) (\lambda (ee: K).(match ee with [(Bind b) \Rightarrow (match b with
120 [Abbr \Rightarrow True | Abst \Rightarrow False | Void \Rightarrow False]) |
121 (Flat _) \Rightarrow False])) I (Bind Void) H14) in (False_ind (sc3 g a0 c2
122 (lift1 is (TLRef i))) H18)))))))))) H12)) H11)))))) H8))))))
123 H5)))))))))))))))) (\lambda (c: C).(\lambda (d: C).(\lambda (u: T).(\lambda
124 (i: nat).(\lambda (H0: (getl i c (CHead d (Bind Abst) u))).(\lambda (a0:
125 A).(\lambda (H1: (arity g d u (asucc g a0))).(\lambda (_: ((\forall (d1:
126 C).(\forall (is: PList).((drop1 is d1 d) \to (\forall (c2: C).((csubc g d1
127 c2) \to (sc3 g (asucc g a0) c2 (lift1 is u))))))))).(\lambda (d1: C).(\lambda
128 (is: PList).(\lambda (H3: (drop1 is d1 c)).(\lambda (c2: C).(\lambda (H4:
129 (csubc g d1 c2)).(let H5 \def H0 in (let H_x \def (drop1_getl_trans is c d1
130 H3 Abst d u i H5) in (let H6 \def H_x in (ex2_ind C (\lambda (e2: C).(drop1
131 (ptrans is i) e2 d)) (\lambda (e2: C).(getl (trans is i) d1 (CHead e2 (Bind
132 Abst) (lift1 (ptrans is i) u)))) (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda
133 (x: C).(\lambda (H7: (drop1 (ptrans is i) x d)).(\lambda (H8: (getl (trans is
134 i) d1 (CHead x (Bind Abst) (lift1 (ptrans is i) u)))).(let H_x0 \def
135 (csubc_getl_conf g d1 (CHead x (Bind Abst) (lift1 (ptrans is i) u)) (trans is
136 i) H8 c2 H4) in (let H9 \def H_x0 in (ex2_ind C (\lambda (e2: C).(getl (trans
137 is i) c2 e2)) (\lambda (e2: C).(csubc g (CHead x (Bind Abst) (lift1 (ptrans
138 is i) u)) e2)) (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x0: C).(\lambda
139 (H10: (getl (trans is i) c2 x0)).(\lambda (H11: (csubc g (CHead x (Bind Abst)
140 (lift1 (ptrans is i) u)) x0)).(let H_x1 \def (csubc_gen_head_l g x x0 (lift1
141 (ptrans is i) u) (Bind Abst) H11) in (let H12 \def H_x1 in (or3_ind (ex2 C
142 (\lambda (c3: C).(eq C x0 (CHead c3 (Bind Abst) (lift1 (ptrans is i) u))))
143 (\lambda (c3: C).(csubc g x c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_:
144 T).(\lambda (_: A).(eq K (Bind Abst) (Bind Abst))))) (\lambda (c3:
145 C).(\lambda (w: T).(\lambda (_: A).(eq C x0 (CHead c3 (Bind Abbr) w)))))
146 (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g x c3)))) (\lambda
147 (_: C).(\lambda (_: T).(\lambda (a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans
148 is i) u))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3
149 w))))) (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C
150 x0 (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_:
151 T).(eq K (Bind Abst) (Bind Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda
152 (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_:
153 T).(csubc g x c3))))) (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (H13: (ex2
154 C (\lambda (c3: C).(eq C x0 (CHead c3 (Bind Abst) (lift1 (ptrans is i) u))))
155 (\lambda (c3: C).(csubc g x c3)))).(ex2_ind C (\lambda (c3: C).(eq C x0
156 (CHead c3 (Bind Abst) (lift1 (ptrans is i) u)))) (\lambda (c3: C).(csubc g x
157 c3)) (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x1: C).(\lambda (H14: (eq C
158 x0 (CHead x1 (Bind Abst) (lift1 (ptrans is i) u)))).(\lambda (_: (csubc g x
159 x1)).(let H16 \def (eq_ind C x0 (\lambda (c0: C).(getl (trans is i) c2 c0))
160 H10 (CHead x1 (Bind Abst) (lift1 (ptrans is i) u)) H14) in (let H_y \def
161 (sc3_abst g a0 TNil) in (eq_ind_r T (TLRef (trans is i)) (\lambda (t0:
162 T).(sc3 g a0 c2 t0)) (H_y c2 (trans is i) (csubc_arity_conf g d1 c2 H4 (TLRef
163 (trans is i)) a0 (eq_ind T (lift1 is (TLRef i)) (\lambda (t0: T).(arity g d1
164 t0 a0)) (arity_lift1 g a0 c is d1 (TLRef i) H3 (arity_abst g c d u i H0 a0
165 H1)) (TLRef (trans is i)) (lift1_lref is i))) (nf2_lref_abst c2 x1 (lift1
166 (ptrans is i) u) (trans is i) H16) I) (lift1 is (TLRef i)) (lift1_lref is
167 i))))))) H13)) (\lambda (H13: (ex5_3 C T A (\lambda (_: C).(\lambda (_:
168 T).(\lambda (_: A).(eq K (Bind Abst) (Bind Abst))))) (\lambda (c3:
169 C).(\lambda (w: T).(\lambda (_: A).(eq C x0 (CHead c3 (Bind Abbr) w)))))
170 (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g x c3)))) (\lambda
171 (_: C).(\lambda (_: T).(\lambda (a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans
172 is i) u))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3
173 w)))))).(ex5_3_ind C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq
174 K (Bind Abst) (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_:
175 A).(eq C x0 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_:
176 T).(\lambda (_: A).(csubc g x c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda
177 (a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans is i) u))))) (\lambda (c3:
178 C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3 w)))) (sc3 g a0 c2 (lift1 is
179 (TLRef i))) (\lambda (x1: C).(\lambda (x2: T).(\lambda (x3: A).(\lambda (_:
180 (eq K (Bind Abst) (Bind Abst))).(\lambda (H15: (eq C x0 (CHead x1 (Bind Abbr)
181 x2))).(\lambda (_: (csubc g x x1)).(\lambda (H17: (sc3 g (asucc g x3) x
182 (lift1 (ptrans is i) u))).(\lambda (H18: (sc3 g x3 x1 x2)).(let H19 \def
183 (eq_ind C x0 (\lambda (c0: C).(getl (trans is i) c2 c0)) H10 (CHead x1 (Bind
184 Abbr) x2) H15) in (let H_y \def (sc3_abbr g a0 TNil) in (eq_ind_r T (TLRef
185 (trans is i)) (\lambda (t0: T).(sc3 g a0 c2 t0)) (H_y (trans is i) x1 x2 c2
186 (let H_y0 \def (arity_lift1 g (asucc g a0) d (ptrans is i) x u H7 H1) in (let
187 H_y1 \def (sc3_arity_gen g x (lift1 (ptrans is i) u) (asucc g x3) H17) in
188 (sc3_repl g x3 c2 (lift (S (trans is i)) O x2) (sc3_lift g x3 x1 x2 H18 c2 (S
189 (trans is i)) O (getl_drop Abbr c2 x1 x2 (trans is i) H19)) a0 (asucc_inj g
190 x3 a0 (arity_mono g x (lift1 (ptrans is i) u) (asucc g x3) H_y1 (asucc g a0)
191 H_y0))))) H19) (lift1 is (TLRef i)) (lift1_lref is i)))))))))))) H13))
192 (\lambda (H13: (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2:
193 T).(eq C x0 (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_:
194 C).(\lambda (_: T).(eq K (Bind Abst) (Bind Void))))) (\lambda (b: B).(\lambda
195 (_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3:
196 C).(\lambda (_: T).(csubc g x c3)))))).(ex4_3_ind B C T (\lambda (b:
197 B).(\lambda (c3: C).(\lambda (v2: T).(eq C x0 (CHead c3 (Bind b) v2)))))
198 (\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K (Bind Abst) (Bind
199 Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b
200 Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g x c3))))
201 (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x1: B).(\lambda (x2: C).(\lambda
202 (x3: T).(\lambda (H14: (eq C x0 (CHead x2 (Bind x1) x3))).(\lambda (H15: (eq
203 K (Bind Abst) (Bind Void))).(\lambda (_: (not (eq B x1 Void))).(\lambda (_:
204 (csubc g x x2)).(let H18 \def (eq_ind C x0 (\lambda (c0: C).(getl (trans is
205 i) c2 c0)) H10 (CHead x2 (Bind x1) x3) H14) in (let H19 \def (eq_ind K (Bind
206 Abst) (\lambda (ee: K).(match ee with [(Bind b) \Rightarrow (match b with
207 [Abbr \Rightarrow False | Abst \Rightarrow True | Void \Rightarrow False]) |
208 (Flat _) \Rightarrow False])) I (Bind Void) H15) in (False_ind (sc3 g a0 c2
209 (lift1 is (TLRef i))) H19)))))))))) H13)) H12)))))) H9))))))
210 H6))))))))))))))))) (\lambda (b: B).(\lambda (H0: (not (eq B b
211 Abst))).(\lambda (c: C).(\lambda (u: T).(\lambda (a1: A).(\lambda (_: (arity
212 g c u a1)).(\lambda (H2: ((\forall (d1: C).(\forall (is: PList).((drop1 is d1
213 c) \to (\forall (c2: C).((csubc g d1 c2) \to (sc3 g a1 c2 (lift1 is
214 u))))))))).(\lambda (t0: T).(\lambda (a2: A).(\lambda (_: (arity g (CHead c
215 (Bind b) u) t0 a2)).(\lambda (H4: ((\forall (d1: C).(\forall (is:
216 PList).((drop1 is d1 (CHead c (Bind b) u)) \to (\forall (c2: C).((csubc g d1
217 c2) \to (sc3 g a2 c2 (lift1 is t0))))))))).(\lambda (d1: C).(\lambda (is:
218 PList).(\lambda (H5: (drop1 is d1 c)).(\lambda (c2: C).(\lambda (H6: (csubc g
219 d1 c2)).(let H_y \def (sc3_bind g b H0 a1 a2 TNil) in (eq_ind_r T (THead
220 (Bind b) (lift1 is u) (lift1 (Ss is) t0)) (\lambda (t1: T).(sc3 g a2 c2 t1))
221 (H_y c2 (lift1 is u) (lift1 (Ss is) t0) (H4 (CHead d1 (Bind b) (lift1 is u))
222 (Ss is) (drop1_skip_bind b c is d1 u H5) (CHead c2 (Bind b) (lift1 is u))
223 (csubc_head g d1 c2 H6 (Bind b) (lift1 is u))) (H2 d1 is H5 c2 H6)) (lift1 is
224 (THead (Bind b) u t0)) (lift1_bind b is u t0))))))))))))))))))) (\lambda (c:
225 C).(\lambda (u: T).(\lambda (a1: A).(\lambda (H0: (arity g c u (asucc g
226 a1))).(\lambda (H1: ((\forall (d1: C).(\forall (is: PList).((drop1 is d1 c)
227 \to (\forall (c2: C).((csubc g d1 c2) \to (sc3 g (asucc g a1) c2 (lift1 is
228 u))))))))).(\lambda (t0: T).(\lambda (a2: A).(\lambda (H2: (arity g (CHead c
229 (Bind Abst) u) t0 a2)).(\lambda (H3: ((\forall (d1: C).(\forall (is:
230 PList).((drop1 is d1 (CHead c (Bind Abst) u)) \to (\forall (c2: C).((csubc g
231 d1 c2) \to (sc3 g a2 c2 (lift1 is t0))))))))).(\lambda (d1: C).(\lambda (is:
232 PList).(\lambda (H4: (drop1 is d1 c)).(\lambda (c2: C).(\lambda (H5: (csubc g
233 d1 c2)).(eq_ind_r T (THead (Bind Abst) (lift1 is u) (lift1 (Ss is) t0))
234 (\lambda (t1: T).(land (arity g c2 t1 (AHead a1 a2)) (\forall (d: C).(\forall
235 (w: T).((sc3 g a1 d w) \to (\forall (is0: PList).((drop1 is0 d c2) \to (sc3 g
236 a2 d (THead (Flat Appl) w (lift1 is0 t1)))))))))) (conj (arity g c2 (THead
237 (Bind Abst) (lift1 is u) (lift1 (Ss is) t0)) (AHead a1 a2)) (\forall (d:
238 C).(\forall (w: T).((sc3 g a1 d w) \to (\forall (is0: PList).((drop1 is0 d
239 c2) \to (sc3 g a2 d (THead (Flat Appl) w (lift1 is0 (THead (Bind Abst) (lift1
240 is u) (lift1 (Ss is) t0)))))))))) (csubc_arity_conf g d1 c2 H5 (THead (Bind
241 Abst) (lift1 is u) (lift1 (Ss is) t0)) (AHead a1 a2) (arity_head g d1 (lift1
242 is u) a1 (arity_lift1 g (asucc g a1) c is d1 u H4 H0) (lift1 (Ss is) t0) a2
243 (arity_lift1 g a2 (CHead c (Bind Abst) u) (Ss is) (CHead d1 (Bind Abst)
244 (lift1 is u)) t0 (drop1_skip_bind Abst c is d1 u H4) H2))) (\lambda (d:
245 C).(\lambda (w: T).(\lambda (H6: (sc3 g a1 d w)).(\lambda (is0:
246 PList).(\lambda (H7: (drop1 is0 d c2)).(eq_ind_r T (THead (Bind Abst) (lift1
247 is0 (lift1 is u)) (lift1 (Ss is0) (lift1 (Ss is) t0))) (\lambda (t1: T).(sc3
248 g a2 d (THead (Flat Appl) w t1))) (let H8 \def (sc3_appl g a1 a2 TNil) in (H8
249 d w (lift1 (Ss is0) (lift1 (Ss is) t0)) (let H_y \def (sc3_bind g Abbr
250 not_abbr_abst a1 a2 TNil) in (H_y d w (lift1 (Ss is0) (lift1 (Ss is) t0))
251 (let H_x \def (csubc_drop1_conf_rev g is0 d c2 H7 d1 H5) in (let H9 \def H_x
252 in (ex2_ind C (\lambda (c3: C).(drop1 is0 c3 d1)) (\lambda (c3: C).(csubc g
253 c3 d)) (sc3 g a2 (CHead d (Bind Abbr) w) (lift1 (Ss is0) (lift1 (Ss is) t0)))
254 (\lambda (x: C).(\lambda (H10: (drop1 is0 x d1)).(\lambda (H11: (csubc g x
255 d)).(eq_ind_r T (lift1 (papp (Ss is0) (Ss is)) t0) (\lambda (t1: T).(sc3 g a2
256 (CHead d (Bind Abbr) w) t1)) (eq_ind_r PList (Ss (papp is0 is)) (\lambda (p:
257 PList).(sc3 g a2 (CHead d (Bind Abbr) w) (lift1 p t0))) (H3 (CHead x (Bind
258 Abst) (lift1 (papp is0 is) u)) (Ss (papp is0 is)) (drop1_skip_bind Abst c
259 (papp is0 is) x u (drop1_trans is0 x d1 H10 is c H4)) (CHead d (Bind Abbr) w)
260 (csubc_abst g x d H11 (lift1 (papp is0 is) u) a1 (H1 x (papp is0 is)
261 (drop1_trans is0 x d1 H10 is c H4) x (csubc_refl g x)) w H6)) (papp (Ss is0)
262 (Ss is)) (papp_ss is0 is)) (lift1 (Ss is0) (lift1 (Ss is) t0)) (lift1_lift1
263 (Ss is0) (Ss is) t0))))) H9))) H6)) H6 (lift1 is0 (lift1 is u)) (sc3_lift1 g
264 c2 (asucc g a1) is0 d (lift1 is u) (H1 d1 is H4 c2 H5) H7))) (lift1 is0
265 (THead (Bind Abst) (lift1 is u) (lift1 (Ss is) t0))) (lift1_bind Abst is0
266 (lift1 is u) (lift1 (Ss is) t0))))))))) (lift1 is (THead (Bind Abst) u t0))
267 (lift1_bind Abst is u t0)))))))))))))))) (\lambda (c: C).(\lambda (u:
268 T).(\lambda (a1: A).(\lambda (_: (arity g c u a1)).(\lambda (H1: ((\forall
269 (d1: C).(\forall (is: PList).((drop1 is d1 c) \to (\forall (c2: C).((csubc g
270 d1 c2) \to (sc3 g a1 c2 (lift1 is u))))))))).(\lambda (t0: T).(\lambda (a2:
271 A).(\lambda (_: (arity g c t0 (AHead a1 a2))).(\lambda (H3: ((\forall (d1:
272 C).(\forall (is: PList).((drop1 is d1 c) \to (\forall (c2: C).((csubc g d1
273 c2) \to (sc3 g (AHead a1 a2) c2 (lift1 is t0))))))))).(\lambda (d1:
274 C).(\lambda (is: PList).(\lambda (H4: (drop1 is d1 c)).(\lambda (c2:
275 C).(\lambda (H5: (csubc g d1 c2)).(let H_y \def (H1 d1 is H4 c2 H5) in (let
276 H_y0 \def (H3 d1 is H4 c2 H5) in (let H6 \def H_y0 in (land_ind (arity g c2
277 (lift1 is t0) (AHead a1 a2)) (\forall (d: C).(\forall (w: T).((sc3 g a1 d w)
278 \to (\forall (is0: PList).((drop1 is0 d c2) \to (sc3 g a2 d (THead (Flat
279 Appl) w (lift1 is0 (lift1 is t0))))))))) (sc3 g a2 c2 (lift1 is (THead (Flat
280 Appl) u t0))) (\lambda (_: (arity g c2 (lift1 is t0) (AHead a1 a2))).(\lambda
281 (H8: ((\forall (d: C).(\forall (w: T).((sc3 g a1 d w) \to (\forall (is0:
282 PList).((drop1 is0 d c2) \to (sc3 g a2 d (THead (Flat Appl) w (lift1 is0
283 (lift1 is t0))))))))))).(let H_y1 \def (H8 c2 (lift1 is u) H_y PNil) in
284 (eq_ind_r T (THead (Flat Appl) (lift1 is u) (lift1 is t0)) (\lambda (t1:
285 T).(sc3 g a2 c2 t1)) (H_y1 (drop1_nil c2)) (lift1 is (THead (Flat Appl) u
286 t0)) (lift1_flat Appl is u t0))))) H6)))))))))))))))))) (\lambda (c:
287 C).(\lambda (u: T).(\lambda (a0: A).(\lambda (_: (arity g c u (asucc g
288 a0))).(\lambda (H1: ((\forall (d1: C).(\forall (is: PList).((drop1 is d1 c)
289 \to (\forall (c2: C).((csubc g d1 c2) \to (sc3 g (asucc g a0) c2 (lift1 is
290 u))))))))).(\lambda (t0: T).(\lambda (_: (arity g c t0 a0)).(\lambda (H3:
291 ((\forall (d1: C).(\forall (is: PList).((drop1 is d1 c) \to (\forall (c2:
292 C).((csubc g d1 c2) \to (sc3 g a0 c2 (lift1 is t0))))))))).(\lambda (d1:
293 C).(\lambda (is: PList).(\lambda (H4: (drop1 is d1 c)).(\lambda (c2:
294 C).(\lambda (H5: (csubc g d1 c2)).(let H_y \def (sc3_cast g a0 TNil) in
295 (eq_ind_r T (THead (Flat Cast) (lift1 is u) (lift1 is t0)) (\lambda (t1:
296 T).(sc3 g a0 c2 t1)) (H_y c2 (lift1 is u) (H1 d1 is H4 c2 H5) (lift1 is t0)
297 (H3 d1 is H4 c2 H5)) (lift1 is (THead (Flat Cast) u t0)) (lift1_flat Cast is
298 u t0)))))))))))))))) (\lambda (c: C).(\lambda (t0: T).(\lambda (a1:
299 A).(\lambda (_: (arity g c t0 a1)).(\lambda (H1: ((\forall (d1: C).(\forall
300 (is: PList).((drop1 is d1 c) \to (\forall (c2: C).((csubc g d1 c2) \to (sc3 g
301 a1 c2 (lift1 is t0))))))))).(\lambda (a2: A).(\lambda (H2: (leq g a1
302 a2)).(\lambda (d1: C).(\lambda (is: PList).(\lambda (H3: (drop1 is d1
303 c)).(\lambda (c2: C).(\lambda (H4: (csubc g d1 c2)).(sc3_repl g a1 c2 (lift1
304 is t0) (H1 d1 is H3 c2 H4) a2 H2))))))))))))) c1 t a H))))).
307 \forall (g: G).(\forall (c: C).(\forall (t: T).(\forall (a: A).((arity g c t
308 a) \to (sc3 g a c t)))))
310 \lambda (g: G).(\lambda (c: C).(\lambda (t: T).(\lambda (a: A).(\lambda (H:
311 (arity g c t a)).(let H_y \def (sc3_arity_csubc g c t a H c PNil) in (H_y
312 (drop1_nil c) c (csubc_refl g c))))))).