1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 include "basic_1/sty1/defs.ma".
19 implied rec lemma sty1_ind (g: G) (c: C) (t1: T) (P: (T \to Prop)) (f:
20 (\forall (t2: T).((sty0 g c t1 t2) \to (P t2)))) (f0: (\forall (t: T).((sty1
21 g c t1 t) \to ((P t) \to (\forall (t2: T).((sty0 g c t t2) \to (P t2)))))))
22 (t: T) (s0: sty1 g c t1 t) on s0: P t \def match s0 with [(sty1_sty0 t2 s1)
23 \Rightarrow (f t2 s1) | (sty1_sing t0 s1 t2 s2) \Rightarrow (f0 t0 s1
24 ((sty1_ind g c t1 P f f0) t0 s1) t2 s2)].