1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 include "basic_1/subst0/defs.ma".
19 include "basic_1/lift/props.ma".
22 \forall (t: T).(\forall (d: nat).(or (\forall (w: T).(ex T (\lambda (v:
23 T).(subst0 d w t (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T t (lift (S
26 \lambda (t: T).(T_ind (\lambda (t0: T).(\forall (d: nat).(or (\forall (w:
27 T).(ex T (\lambda (v: T).(subst0 d w t0 (lift (S O) d v))))) (ex T (\lambda
28 (v: T).(eq T t0 (lift (S O) d v))))))) (\lambda (n: nat).(\lambda (d:
29 nat).(or_intror (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (TSort n)
30 (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T (TSort n) (lift (S O) d
31 v)))) (ex_intro T (\lambda (v: T).(eq T (TSort n) (lift (S O) d v))) (TSort
32 n) (eq_ind_r T (TSort n) (\lambda (t0: T).(eq T (TSort n) t0)) (refl_equal T
33 (TSort n)) (lift (S O) d (TSort n)) (lift_sort n (S O) d)))))) (\lambda (n:
34 nat).(\lambda (d: nat).(lt_eq_gt_e n d (or (\forall (w: T).(ex T (\lambda (v:
35 T).(subst0 d w (TLRef n) (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T
36 (TLRef n) (lift (S O) d v))))) (\lambda (H: (lt n d)).(or_intror (\forall (w:
37 T).(ex T (\lambda (v: T).(subst0 d w (TLRef n) (lift (S O) d v))))) (ex T
38 (\lambda (v: T).(eq T (TLRef n) (lift (S O) d v)))) (ex_intro T (\lambda (v:
39 T).(eq T (TLRef n) (lift (S O) d v))) (TLRef n) (eq_ind_r T (TLRef n)
40 (\lambda (t0: T).(eq T (TLRef n) t0)) (refl_equal T (TLRef n)) (lift (S O) d
41 (TLRef n)) (lift_lref_lt n (S O) d H))))) (\lambda (H: (eq nat n d)).(eq_ind
42 nat n (\lambda (n0: nat).(or (\forall (w: T).(ex T (\lambda (v: T).(subst0 n0
43 w (TLRef n) (lift (S O) n0 v))))) (ex T (\lambda (v: T).(eq T (TLRef n) (lift
44 (S O) n0 v)))))) (or_introl (\forall (w: T).(ex T (\lambda (v: T).(subst0 n w
45 (TLRef n) (lift (S O) n v))))) (ex T (\lambda (v: T).(eq T (TLRef n) (lift (S
46 O) n v)))) (\lambda (w: T).(ex_intro T (\lambda (v: T).(subst0 n w (TLRef n)
47 (lift (S O) n v))) (lift n O w) (eq_ind_r T (lift (plus (S O) n) O w)
48 (\lambda (t0: T).(subst0 n w (TLRef n) t0)) (subst0_lref w n) (lift (S O) n
49 (lift n O w)) (lift_free w n (S O) O n (le_plus_r O n) (le_O_n n)))))) d H))
50 (\lambda (H: (lt d n)).(or_intror (\forall (w: T).(ex T (\lambda (v:
51 T).(subst0 d w (TLRef n) (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T
52 (TLRef n) (lift (S O) d v)))) (ex_intro T (\lambda (v: T).(eq T (TLRef n)
53 (lift (S O) d v))) (TLRef (pred n)) (eq_ind_r T (TLRef n) (\lambda (t0:
54 T).(eq T (TLRef n) t0)) (refl_equal T (TLRef n)) (lift (S O) d (TLRef (pred
55 n))) (lift_lref_gt d n H)))))))) (\lambda (k: K).(\lambda (t0: T).(\lambda
56 (H: ((\forall (d: nat).(or (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w
57 t0 (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T t0 (lift (S O) d
58 v)))))))).(\lambda (t1: T).(\lambda (H0: ((\forall (d: nat).(or (\forall (w:
59 T).(ex T (\lambda (v: T).(subst0 d w t1 (lift (S O) d v))))) (ex T (\lambda
60 (v: T).(eq T t1 (lift (S O) d v)))))))).(\lambda (d: nat).(let H_x \def (H d)
61 in (let H1 \def H_x in (or_ind (\forall (w: T).(ex T (\lambda (v: T).(subst0
62 d w t0 (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T t0 (lift (S O) d
63 v)))) (or (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (THead k t0 t1)
64 (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T (THead k t0 t1) (lift (S O)
65 d v))))) (\lambda (H2: ((\forall (w: T).(ex T (\lambda (v: T).(subst0 d w t0
66 (lift (S O) d v))))))).(let H_x0 \def (H0 (s k d)) in (let H3 \def H_x0 in
67 (or_ind (\forall (w: T).(ex T (\lambda (v: T).(subst0 (s k d) w t1 (lift (S
68 O) (s k d) v))))) (ex T (\lambda (v: T).(eq T t1 (lift (S O) (s k d) v))))
69 (or (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (THead k t0 t1) (lift
70 (S O) d v))))) (ex T (\lambda (v: T).(eq T (THead k t0 t1) (lift (S O) d
71 v))))) (\lambda (H4: ((\forall (w: T).(ex T (\lambda (v: T).(subst0 (s k d) w
72 t1 (lift (S O) (s k d) v))))))).(or_introl (\forall (w: T).(ex T (\lambda (v:
73 T).(subst0 d w (THead k t0 t1) (lift (S O) d v))))) (ex T (\lambda (v: T).(eq
74 T (THead k t0 t1) (lift (S O) d v)))) (\lambda (w: T).(let H_x1 \def (H4 w)
75 in (let H5 \def H_x1 in (ex_ind T (\lambda (v: T).(subst0 (s k d) w t1 (lift
76 (S O) (s k d) v))) (ex T (\lambda (v: T).(subst0 d w (THead k t0 t1) (lift (S
77 O) d v)))) (\lambda (x: T).(\lambda (H6: (subst0 (s k d) w t1 (lift (S O) (s
78 k d) x))).(let H_x2 \def (H2 w) in (let H7 \def H_x2 in (ex_ind T (\lambda
79 (v: T).(subst0 d w t0 (lift (S O) d v))) (ex T (\lambda (v: T).(subst0 d w
80 (THead k t0 t1) (lift (S O) d v)))) (\lambda (x0: T).(\lambda (H8: (subst0 d
81 w t0 (lift (S O) d x0))).(ex_intro T (\lambda (v: T).(subst0 d w (THead k t0
82 t1) (lift (S O) d v))) (THead k x0 x) (eq_ind_r T (THead k (lift (S O) d x0)
83 (lift (S O) (s k d) x)) (\lambda (t2: T).(subst0 d w (THead k t0 t1) t2))
84 (subst0_both w t0 (lift (S O) d x0) d H8 k t1 (lift (S O) (s k d) x) H6)
85 (lift (S O) d (THead k x0 x)) (lift_head k x0 x (S O) d))))) H7))))) H5))))))
86 (\lambda (H4: (ex T (\lambda (v: T).(eq T t1 (lift (S O) (s k d)
87 v))))).(ex_ind T (\lambda (v: T).(eq T t1 (lift (S O) (s k d) v))) (or
88 (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (THead k t0 t1) (lift (S O)
89 d v))))) (ex T (\lambda (v: T).(eq T (THead k t0 t1) (lift (S O) d v)))))
90 (\lambda (x: T).(\lambda (H5: (eq T t1 (lift (S O) (s k d) x))).(eq_ind_r T
91 (lift (S O) (s k d) x) (\lambda (t2: T).(or (\forall (w: T).(ex T (\lambda
92 (v: T).(subst0 d w (THead k t0 t2) (lift (S O) d v))))) (ex T (\lambda (v:
93 T).(eq T (THead k t0 t2) (lift (S O) d v)))))) (or_introl (\forall (w: T).(ex
94 T (\lambda (v: T).(subst0 d w (THead k t0 (lift (S O) (s k d) x)) (lift (S O)
95 d v))))) (ex T (\lambda (v: T).(eq T (THead k t0 (lift (S O) (s k d) x))
96 (lift (S O) d v)))) (\lambda (w: T).(let H_x1 \def (H2 w) in (let H6 \def
97 H_x1 in (ex_ind T (\lambda (v: T).(subst0 d w t0 (lift (S O) d v))) (ex T
98 (\lambda (v: T).(subst0 d w (THead k t0 (lift (S O) (s k d) x)) (lift (S O) d
99 v)))) (\lambda (x0: T).(\lambda (H7: (subst0 d w t0 (lift (S O) d
100 x0))).(ex_intro T (\lambda (v: T).(subst0 d w (THead k t0 (lift (S O) (s k d)
101 x)) (lift (S O) d v))) (THead k x0 x) (eq_ind_r T (THead k (lift (S O) d x0)
102 (lift (S O) (s k d) x)) (\lambda (t2: T).(subst0 d w (THead k t0 (lift (S O)
103 (s k d) x)) t2)) (subst0_fst w (lift (S O) d x0) t0 d H7 (lift (S O) (s k d)
104 x) k) (lift (S O) d (THead k x0 x)) (lift_head k x0 x (S O) d))))) H6))))) t1
105 H5))) H4)) H3)))) (\lambda (H2: (ex T (\lambda (v: T).(eq T t0 (lift (S O) d
106 v))))).(ex_ind T (\lambda (v: T).(eq T t0 (lift (S O) d v))) (or (\forall (w:
107 T).(ex T (\lambda (v: T).(subst0 d w (THead k t0 t1) (lift (S O) d v))))) (ex
108 T (\lambda (v: T).(eq T (THead k t0 t1) (lift (S O) d v))))) (\lambda (x:
109 T).(\lambda (H3: (eq T t0 (lift (S O) d x))).(let H_x0 \def (H0 (s k d)) in
110 (let H4 \def H_x0 in (or_ind (\forall (w: T).(ex T (\lambda (v: T).(subst0 (s
111 k d) w t1 (lift (S O) (s k d) v))))) (ex T (\lambda (v: T).(eq T t1 (lift (S
112 O) (s k d) v)))) (or (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (THead
113 k t0 t1) (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T (THead k t0 t1)
114 (lift (S O) d v))))) (\lambda (H5: ((\forall (w: T).(ex T (\lambda (v:
115 T).(subst0 (s k d) w t1 (lift (S O) (s k d) v))))))).(eq_ind_r T (lift (S O)
116 d x) (\lambda (t2: T).(or (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w
117 (THead k t2 t1) (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T (THead k t2
118 t1) (lift (S O) d v)))))) (or_introl (\forall (w: T).(ex T (\lambda (v:
119 T).(subst0 d w (THead k (lift (S O) d x) t1) (lift (S O) d v))))) (ex T
120 (\lambda (v: T).(eq T (THead k (lift (S O) d x) t1) (lift (S O) d v))))
121 (\lambda (w: T).(let H_x1 \def (H5 w) in (let H6 \def H_x1 in (ex_ind T
122 (\lambda (v: T).(subst0 (s k d) w t1 (lift (S O) (s k d) v))) (ex T (\lambda
123 (v: T).(subst0 d w (THead k (lift (S O) d x) t1) (lift (S O) d v)))) (\lambda
124 (x0: T).(\lambda (H7: (subst0 (s k d) w t1 (lift (S O) (s k d)
125 x0))).(ex_intro T (\lambda (v: T).(subst0 d w (THead k (lift (S O) d x) t1)
126 (lift (S O) d v))) (THead k x x0) (eq_ind_r T (THead k (lift (S O) d x) (lift
127 (S O) (s k d) x0)) (\lambda (t2: T).(subst0 d w (THead k (lift (S O) d x) t1)
128 t2)) (subst0_snd k w (lift (S O) (s k d) x0) t1 d H7 (lift (S O) d x)) (lift
129 (S O) d (THead k x x0)) (lift_head k x x0 (S O) d))))) H6))))) t0 H3))
130 (\lambda (H5: (ex T (\lambda (v: T).(eq T t1 (lift (S O) (s k d)
131 v))))).(ex_ind T (\lambda (v: T).(eq T t1 (lift (S O) (s k d) v))) (or
132 (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (THead k t0 t1) (lift (S O)
133 d v))))) (ex T (\lambda (v: T).(eq T (THead k t0 t1) (lift (S O) d v)))))
134 (\lambda (x0: T).(\lambda (H6: (eq T t1 (lift (S O) (s k d) x0))).(eq_ind_r T
135 (lift (S O) (s k d) x0) (\lambda (t2: T).(or (\forall (w: T).(ex T (\lambda
136 (v: T).(subst0 d w (THead k t0 t2) (lift (S O) d v))))) (ex T (\lambda (v:
137 T).(eq T (THead k t0 t2) (lift (S O) d v)))))) (eq_ind_r T (lift (S O) d x)
138 (\lambda (t2: T).(or (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (THead
139 k t2 (lift (S O) (s k d) x0)) (lift (S O) d v))))) (ex T (\lambda (v: T).(eq
140 T (THead k t2 (lift (S O) (s k d) x0)) (lift (S O) d v)))))) (or_intror
141 (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (THead k (lift (S O) d x)
142 (lift (S O) (s k d) x0)) (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T
143 (THead k (lift (S O) d x) (lift (S O) (s k d) x0)) (lift (S O) d v))))
144 (ex_intro T (\lambda (v: T).(eq T (THead k (lift (S O) d x) (lift (S O) (s k
145 d) x0)) (lift (S O) d v))) (THead k x x0) (eq_ind_r T (THead k (lift (S O) d
146 x) (lift (S O) (s k d) x0)) (\lambda (t2: T).(eq T (THead k (lift (S O) d x)
147 (lift (S O) (s k d) x0)) t2)) (refl_equal T (THead k (lift (S O) d x) (lift
148 (S O) (s k d) x0))) (lift (S O) d (THead k x x0)) (lift_head k x x0 (S O)
149 d)))) t0 H3) t1 H6))) H5)) H4))))) H2)) H1))))))))) t).
152 \forall (w: T).(\forall (t: T).(\forall (d: nat).(ex T (\lambda (v: T).(or
153 (subst0 d w t (lift (S O) d v)) (eq T t (lift (S O) d v)))))))
155 \lambda (w: T).(\lambda (t: T).(\lambda (d: nat).(let H_x \def (dnf_dec2 t
156 d) in (let H \def H_x in (or_ind (\forall (w0: T).(ex T (\lambda (v:
157 T).(subst0 d w0 t (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T t (lift (S
158 O) d v)))) (ex T (\lambda (v: T).(or (subst0 d w t (lift (S O) d v)) (eq T t
159 (lift (S O) d v))))) (\lambda (H0: ((\forall (w0: T).(ex T (\lambda (v:
160 T).(subst0 d w0 t (lift (S O) d v))))))).(let H_x0 \def (H0 w) in (let H1
161 \def H_x0 in (ex_ind T (\lambda (v: T).(subst0 d w t (lift (S O) d v))) (ex T
162 (\lambda (v: T).(or (subst0 d w t (lift (S O) d v)) (eq T t (lift (S O) d
163 v))))) (\lambda (x: T).(\lambda (H2: (subst0 d w t (lift (S O) d
164 x))).(ex_intro T (\lambda (v: T).(or (subst0 d w t (lift (S O) d v)) (eq T t
165 (lift (S O) d v)))) x (or_introl (subst0 d w t (lift (S O) d x)) (eq T t
166 (lift (S O) d x)) H2)))) H1)))) (\lambda (H0: (ex T (\lambda (v: T).(eq T t
167 (lift (S O) d v))))).(ex_ind T (\lambda (v: T).(eq T t (lift (S O) d v))) (ex
168 T (\lambda (v: T).(or (subst0 d w t (lift (S O) d v)) (eq T t (lift (S O) d
169 v))))) (\lambda (x: T).(\lambda (H1: (eq T t (lift (S O) d x))).(eq_ind_r T
170 (lift (S O) d x) (\lambda (t0: T).(ex T (\lambda (v: T).(or (subst0 d w t0
171 (lift (S O) d v)) (eq T t0 (lift (S O) d v)))))) (ex_intro T (\lambda (v:
172 T).(or (subst0 d w (lift (S O) d x) (lift (S O) d v)) (eq T (lift (S O) d x)
173 (lift (S O) d v)))) x (or_intror (subst0 d w (lift (S O) d x) (lift (S O) d
174 x)) (eq T (lift (S O) d x) (lift (S O) d x)) (refl_equal T (lift (S O) d
175 x)))) t H1))) H0)) H))))).