1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 include "basic_1/ty3/pr3.ma".
20 \forall (g: G).(\forall (c: C).(\forall (v1: T).(\forall (v2: T).((pr2 c v1
21 v2) \to (\forall (b: B).(\forall (t1: T).(\forall (t2: T).((ty3 g (CHead c
22 (Bind b) v1) t1 t2) \to (ty3 g (CHead c (Bind b) v2) t1 t2)))))))))
24 \lambda (g: G).(\lambda (c: C).(\lambda (v1: T).(\lambda (v2: T).(\lambda
25 (H: (pr2 c v1 v2)).(pr2_ind (\lambda (c0: C).(\lambda (t: T).(\lambda (t0:
26 T).(\forall (b: B).(\forall (t1: T).(\forall (t2: T).((ty3 g (CHead c0 (Bind
27 b) t) t1 t2) \to (ty3 g (CHead c0 (Bind b) t0) t1 t2)))))))) (\lambda (c0:
28 C).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H0: (pr0 t1 t2)).(\lambda (b:
29 B).(\lambda (t0: T).(\lambda (t3: T).(\lambda (H1: (ty3 g (CHead c0 (Bind b)
30 t1) t0 t3)).(ty3_sred_wcpr0_pr0 g (CHead c0 (Bind b) t1) t0 t3 H1 (CHead c0
31 (Bind b) t2) (wcpr0_comp c0 c0 (wcpr0_refl c0) t1 t2 H0 (Bind b)) t0
32 (pr0_refl t0)))))))))) (\lambda (c0: C).(\lambda (d: C).(\lambda (u:
33 T).(\lambda (i: nat).(\lambda (H0: (getl i c0 (CHead d (Bind Abbr)
34 u))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H1: (pr0 t1 t2)).(\lambda
35 (t: T).(\lambda (H2: (subst0 i u t2 t)).(\lambda (b: B).(\lambda (t0:
36 T).(\lambda (t3: T).(\lambda (H3: (ty3 g (CHead c0 (Bind b) t1) t0
37 t3)).(ty3_csubst0 g (CHead c0 (Bind b) t2) t0 t3 (ty3_sred_wcpr0_pr0 g (CHead
38 c0 (Bind b) t1) t0 t3 H3 (CHead c0 (Bind b) t2) (wcpr0_comp c0 c0 (wcpr0_refl
39 c0) t1 t2 H1 (Bind b)) t0 (pr0_refl t0)) d u (S i) (getl_clear_bind b (CHead
40 c0 (Bind b) t2) c0 t2 (clear_bind b c0 t2) (CHead d (Bind Abbr) u) i H0)
41 (CHead c0 (Bind b) t) (csubst0_snd_bind b i u t2 t H2 c0)))))))))))))))) c v1
45 \forall (g: G).(\forall (c: C).(\forall (v1: T).(\forall (v2: T).((pr3 c v1
46 v2) \to (\forall (b: B).(\forall (t1: T).(\forall (t2: T).((ty3 g (CHead c
47 (Bind b) v1) t1 t2) \to (ty3 g (CHead c (Bind b) v2) t1 t2)))))))))
49 \lambda (g: G).(\lambda (c: C).(\lambda (v1: T).(\lambda (v2: T).(\lambda
50 (H: (pr3 c v1 v2)).(pr3_ind c (\lambda (t: T).(\lambda (t0: T).(\forall (b:
51 B).(\forall (t1: T).(\forall (t2: T).((ty3 g (CHead c (Bind b) t) t1 t2) \to
52 (ty3 g (CHead c (Bind b) t0) t1 t2))))))) (\lambda (t: T).(\lambda (b:
53 B).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H0: (ty3 g (CHead c (Bind b)
54 t) t1 t2)).H0))))) (\lambda (t2: T).(\lambda (t1: T).(\lambda (H0: (pr2 c t1
55 t2)).(\lambda (t3: T).(\lambda (_: (pr3 c t2 t3)).(\lambda (H2: ((\forall (b:
56 B).(\forall (t4: T).(\forall (t5: T).((ty3 g (CHead c (Bind b) t2) t4 t5) \to
57 (ty3 g (CHead c (Bind b) t3) t4 t5))))))).(\lambda (b: B).(\lambda (t0:
58 T).(\lambda (t4: T).(\lambda (H3: (ty3 g (CHead c (Bind b) t1) t0 t4)).(H2 b
59 t0 t4 (ty3_cred_pr2 g c t1 t2 H0 b t0 t4 H3)))))))))))) v1 v2 H))))).
62 \forall (g: G).(\forall (c: C).(\forall (t1: T).(\forall (x: T).(\forall (h:
63 nat).(\forall (d: nat).((ty3 g c (lift h d t1) x) \to (\forall (e: C).((drop
64 h d c e) \to (ex2 T (\lambda (t2: T).(pc3 c (lift h d t2) x)) (\lambda (t2:
65 T).(ty3 g e t1 t2)))))))))))
67 \lambda (g: G).(\lambda (c: C).(\lambda (t1: T).(\lambda (x: T).(\lambda (h:
68 nat).(\lambda (d: nat).(\lambda (H: (ty3 g c (lift h d t1) x)).(insert_eq T
69 (lift h d t1) (\lambda (t: T).(ty3 g c t x)) (\lambda (_: T).(\forall (e:
70 C).((drop h d c e) \to (ex2 T (\lambda (t2: T).(pc3 c (lift h d t2) x))
71 (\lambda (t2: T).(ty3 g e t1 t2)))))) (\lambda (y: T).(\lambda (H0: (ty3 g c
72 y x)).(unintro nat d (\lambda (n: nat).((eq T y (lift h n t1)) \to (\forall
73 (e: C).((drop h n c e) \to (ex2 T (\lambda (t2: T).(pc3 c (lift h n t2) x))
74 (\lambda (t2: T).(ty3 g e t1 t2))))))) (unintro T t1 (\lambda (t: T).(\forall
75 (x0: nat).((eq T y (lift h x0 t)) \to (\forall (e: C).((drop h x0 c e) \to
76 (ex2 T (\lambda (t2: T).(pc3 c (lift h x0 t2) x)) (\lambda (t2: T).(ty3 g e t
77 t2)))))))) (ty3_ind g (\lambda (c0: C).(\lambda (t: T).(\lambda (t0:
78 T).(\forall (x0: T).(\forall (x1: nat).((eq T t (lift h x1 x0)) \to (\forall
79 (e: C).((drop h x1 c0 e) \to (ex2 T (\lambda (t2: T).(pc3 c0 (lift h x1 t2)
80 t0)) (\lambda (t2: T).(ty3 g e x0 t2))))))))))) (\lambda (c0: C).(\lambda
81 (t2: T).(\lambda (t: T).(\lambda (_: (ty3 g c0 t2 t)).(\lambda (_: ((\forall
82 (x0: T).(\forall (x1: nat).((eq T t2 (lift h x1 x0)) \to (\forall (e:
83 C).((drop h x1 c0 e) \to (ex2 T (\lambda (t3: T).(pc3 c0 (lift h x1 t3) t))
84 (\lambda (t3: T).(ty3 g e x0 t3)))))))))).(\lambda (u: T).(\lambda (t3:
85 T).(\lambda (H3: (ty3 g c0 u t3)).(\lambda (H4: ((\forall (x0: T).(\forall
86 (x1: nat).((eq T u (lift h x1 x0)) \to (\forall (e: C).((drop h x1 c0 e) \to
87 (ex2 T (\lambda (t4: T).(pc3 c0 (lift h x1 t4) t3)) (\lambda (t4: T).(ty3 g e
88 x0 t4)))))))))).(\lambda (H5: (pc3 c0 t3 t2)).(\lambda (x0: T).(\lambda (x1:
89 nat).(\lambda (H6: (eq T u (lift h x1 x0))).(\lambda (e: C).(\lambda (H7:
90 (drop h x1 c0 e)).(let H8 \def (eq_ind T u (\lambda (t0: T).(\forall (x2:
91 T).(\forall (x3: nat).((eq T t0 (lift h x3 x2)) \to (\forall (e0: C).((drop h
92 x3 c0 e0) \to (ex2 T (\lambda (t4: T).(pc3 c0 (lift h x3 t4) t3)) (\lambda
93 (t4: T).(ty3 g e0 x2 t4))))))))) H4 (lift h x1 x0) H6) in (let H9 \def
94 (eq_ind T u (\lambda (t0: T).(ty3 g c0 t0 t3)) H3 (lift h x1 x0) H6) in (let
95 H10 \def (H8 x0 x1 (refl_equal T (lift h x1 x0)) e H7) in (ex2_ind T (\lambda
96 (t4: T).(pc3 c0 (lift h x1 t4) t3)) (\lambda (t4: T).(ty3 g e x0 t4)) (ex2 T
97 (\lambda (t4: T).(pc3 c0 (lift h x1 t4) t2)) (\lambda (t4: T).(ty3 g e x0
98 t4))) (\lambda (x2: T).(\lambda (H11: (pc3 c0 (lift h x1 x2) t3)).(\lambda
99 (H12: (ty3 g e x0 x2)).(ex_intro2 T (\lambda (t4: T).(pc3 c0 (lift h x1 t4)
100 t2)) (\lambda (t4: T).(ty3 g e x0 t4)) x2 (pc3_t t3 c0 (lift h x1 x2) H11 t2
101 H5) H12)))) H10))))))))))))))))))) (\lambda (c0: C).(\lambda (m:
102 nat).(\lambda (x0: T).(\lambda (x1: nat).(\lambda (H1: (eq T (TSort m) (lift
103 h x1 x0))).(\lambda (e: C).(\lambda (_: (drop h x1 c0 e)).(eq_ind_r T (TSort
104 m) (\lambda (t: T).(ex2 T (\lambda (t2: T).(pc3 c0 (lift h x1 t2) (TSort
105 (next g m)))) (\lambda (t2: T).(ty3 g e t t2)))) (ex_intro2 T (\lambda (t2:
106 T).(pc3 c0 (lift h x1 t2) (TSort (next g m)))) (\lambda (t2: T).(ty3 g e
107 (TSort m) t2)) (TSort (next g m)) (eq_ind_r T (TSort (next g m)) (\lambda (t:
108 T).(pc3 c0 t (TSort (next g m)))) (pc3_refl c0 (TSort (next g m))) (lift h x1
109 (TSort (next g m))) (lift_sort (next g m) h x1)) (ty3_sort g e m)) x0
110 (lift_gen_sort h x1 m x0 H1))))))))) (\lambda (n: nat).(\lambda (c0:
111 C).(\lambda (d0: C).(\lambda (u: T).(\lambda (H1: (getl n c0 (CHead d0 (Bind
112 Abbr) u))).(\lambda (t: T).(\lambda (H2: (ty3 g d0 u t)).(\lambda (H3:
113 ((\forall (x0: T).(\forall (x1: nat).((eq T u (lift h x1 x0)) \to (\forall
114 (e: C).((drop h x1 d0 e) \to (ex2 T (\lambda (t2: T).(pc3 d0 (lift h x1 t2)
115 t)) (\lambda (t2: T).(ty3 g e x0 t2)))))))))).(\lambda (x0: T).(\lambda (x1:
116 nat).(\lambda (H4: (eq T (TLRef n) (lift h x1 x0))).(\lambda (e: C).(\lambda
117 (H5: (drop h x1 c0 e)).(let H_x \def (lift_gen_lref x0 x1 h n H4) in (let H6
118 \def H_x in (or_ind (land (lt n x1) (eq T x0 (TLRef n))) (land (le (plus x1
119 h) n) (eq T x0 (TLRef (minus n h)))) (ex2 T (\lambda (t2: T).(pc3 c0 (lift h
120 x1 t2) (lift (S n) O t))) (\lambda (t2: T).(ty3 g e x0 t2))) (\lambda (H7:
121 (land (lt n x1) (eq T x0 (TLRef n)))).(land_ind (lt n x1) (eq T x0 (TLRef n))
122 (ex2 T (\lambda (t2: T).(pc3 c0 (lift h x1 t2) (lift (S n) O t))) (\lambda
123 (t2: T).(ty3 g e x0 t2))) (\lambda (H8: (lt n x1)).(\lambda (H9: (eq T x0
124 (TLRef n))).(eq_ind_r T (TLRef n) (\lambda (t0: T).(ex2 T (\lambda (t2:
125 T).(pc3 c0 (lift h x1 t2) (lift (S n) O t))) (\lambda (t2: T).(ty3 g e t0
126 t2)))) (let H10 \def (eq_ind nat x1 (\lambda (n0: nat).(drop h n0 c0 e)) H5
127 (S (plus n (minus x1 (S n)))) (lt_plus_minus n x1 H8)) in (ex3_2_ind T C
128 (\lambda (v: T).(\lambda (_: C).(eq T u (lift h (minus x1 (S n)) v))))
129 (\lambda (v: T).(\lambda (e0: C).(getl n e (CHead e0 (Bind Abbr) v))))
130 (\lambda (_: T).(\lambda (e0: C).(drop h (minus x1 (S n)) d0 e0))) (ex2 T
131 (\lambda (t2: T).(pc3 c0 (lift h x1 t2) (lift (S n) O t))) (\lambda (t2:
132 T).(ty3 g e (TLRef n) t2))) (\lambda (x2: T).(\lambda (x3: C).(\lambda (H11:
133 (eq T u (lift h (minus x1 (S n)) x2))).(\lambda (H12: (getl n e (CHead x3
134 (Bind Abbr) x2))).(\lambda (H13: (drop h (minus x1 (S n)) d0 x3)).(let H14
135 \def (eq_ind T u (\lambda (t0: T).(\forall (x4: T).(\forall (x5: nat).((eq T
136 t0 (lift h x5 x4)) \to (\forall (e0: C).((drop h x5 d0 e0) \to (ex2 T
137 (\lambda (t2: T).(pc3 d0 (lift h x5 t2) t)) (\lambda (t2: T).(ty3 g e0 x4
138 t2))))))))) H3 (lift h (minus x1 (S n)) x2) H11) in (let H15 \def (eq_ind T u
139 (\lambda (t0: T).(ty3 g d0 t0 t)) H2 (lift h (minus x1 (S n)) x2) H11) in
140 (let H16 \def (H14 x2 (minus x1 (S n)) (refl_equal T (lift h (minus x1 (S n))
141 x2)) x3 H13) in (ex2_ind T (\lambda (t2: T).(pc3 d0 (lift h (minus x1 (S n))
142 t2) t)) (\lambda (t2: T).(ty3 g x3 x2 t2)) (ex2 T (\lambda (t2: T).(pc3 c0
143 (lift h x1 t2) (lift (S n) O t))) (\lambda (t2: T).(ty3 g e (TLRef n) t2)))
144 (\lambda (x4: T).(\lambda (H17: (pc3 d0 (lift h (minus x1 (S n)) x4)
145 t)).(\lambda (H18: (ty3 g x3 x2 x4)).(eq_ind_r nat (plus (S n) (minus x1 (S
146 n))) (\lambda (n0: nat).(ex2 T (\lambda (t2: T).(pc3 c0 (lift h n0 t2) (lift
147 (S n) O t))) (\lambda (t2: T).(ty3 g e (TLRef n) t2)))) (ex_intro2 T (\lambda
148 (t2: T).(pc3 c0 (lift h (plus (S n) (minus x1 (S n))) t2) (lift (S n) O t)))
149 (\lambda (t2: T).(ty3 g e (TLRef n) t2)) (lift (S n) O x4) (eq_ind_r T (lift
150 (S n) O (lift h (minus x1 (S n)) x4)) (\lambda (t0: T).(pc3 c0 t0 (lift (S n)
151 O t))) (pc3_lift c0 d0 (S n) O (getl_drop Abbr c0 d0 u n H1) (lift h (minus
152 x1 (S n)) x4) t H17) (lift h (plus (S n) (minus x1 (S n))) (lift (S n) O x4))
153 (lift_d x4 h (S n) (minus x1 (S n)) O (le_O_n (minus x1 (S n))))) (ty3_abbr g
154 n e x3 x2 H12 x4 H18)) x1 (le_plus_minus (S n) x1 H8))))) H16)))))))))
155 (getl_drop_conf_lt Abbr c0 d0 u n H1 e h (minus x1 (S n)) H10))) x0 H9)))
156 H7)) (\lambda (H7: (land (le (plus x1 h) n) (eq T x0 (TLRef (minus n
157 h))))).(land_ind (le (plus x1 h) n) (eq T x0 (TLRef (minus n h))) (ex2 T
158 (\lambda (t2: T).(pc3 c0 (lift h x1 t2) (lift (S n) O t))) (\lambda (t2:
159 T).(ty3 g e x0 t2))) (\lambda (H8: (le (plus x1 h) n)).(\lambda (H9: (eq T x0
160 (TLRef (minus n h)))).(eq_ind_r T (TLRef (minus n h)) (\lambda (t0: T).(ex2 T
161 (\lambda (t2: T).(pc3 c0 (lift h x1 t2) (lift (S n) O t))) (\lambda (t2:
162 T).(ty3 g e t0 t2)))) (ex_intro2 T (\lambda (t2: T).(pc3 c0 (lift h x1 t2)
163 (lift (S n) O t))) (\lambda (t2: T).(ty3 g e (TLRef (minus n h)) t2)) (lift
164 (S (minus n h)) O t) (eq_ind_r T (lift (plus h (S (minus n h))) O t) (\lambda
165 (t0: T).(pc3 c0 t0 (lift (S n) O t))) (eq_ind nat (S (plus h (minus n h)))
166 (\lambda (n0: nat).(pc3 c0 (lift n0 O t) (lift (S n) O t))) (eq_ind nat n
167 (\lambda (n0: nat).(pc3 c0 (lift (S n0) O t) (lift (S n) O t))) (pc3_refl c0
168 (lift (S n) O t)) (plus h (minus n h)) (le_plus_minus h n (le_trans h (plus
169 x1 h) n (le_plus_r x1 h) H8))) (plus h (S (minus n h))) (plus_n_Sm h (minus n
170 h))) (lift h x1 (lift (S (minus n h)) O t)) (lift_free t (S (minus n h)) h O
171 x1 (le_trans x1 (S (minus n h)) (plus O (S (minus n h))) (le_S_minus x1 h n
172 H8) (le_plus_r O (S (minus n h)))) (le_O_n x1))) (ty3_abbr g (minus n h) e d0
173 u (getl_drop_conf_ge n (CHead d0 (Bind Abbr) u) c0 H1 e h x1 H5 H8) t H2)) x0
174 H9))) H7)) H6)))))))))))))))) (\lambda (n: nat).(\lambda (c0: C).(\lambda
175 (d0: C).(\lambda (u: T).(\lambda (H1: (getl n c0 (CHead d0 (Bind Abst)
176 u))).(\lambda (t: T).(\lambda (H2: (ty3 g d0 u t)).(\lambda (H3: ((\forall
177 (x0: T).(\forall (x1: nat).((eq T u (lift h x1 x0)) \to (\forall (e:
178 C).((drop h x1 d0 e) \to (ex2 T (\lambda (t2: T).(pc3 d0 (lift h x1 t2) t))
179 (\lambda (t2: T).(ty3 g e x0 t2)))))))))).(\lambda (x0: T).(\lambda (x1:
180 nat).(\lambda (H4: (eq T (TLRef n) (lift h x1 x0))).(\lambda (e: C).(\lambda
181 (H5: (drop h x1 c0 e)).(let H_x \def (lift_gen_lref x0 x1 h n H4) in (let H6
182 \def H_x in (or_ind (land (lt n x1) (eq T x0 (TLRef n))) (land (le (plus x1
183 h) n) (eq T x0 (TLRef (minus n h)))) (ex2 T (\lambda (t2: T).(pc3 c0 (lift h
184 x1 t2) (lift (S n) O u))) (\lambda (t2: T).(ty3 g e x0 t2))) (\lambda (H7:
185 (land (lt n x1) (eq T x0 (TLRef n)))).(land_ind (lt n x1) (eq T x0 (TLRef n))
186 (ex2 T (\lambda (t2: T).(pc3 c0 (lift h x1 t2) (lift (S n) O u))) (\lambda
187 (t2: T).(ty3 g e x0 t2))) (\lambda (H8: (lt n x1)).(\lambda (H9: (eq T x0
188 (TLRef n))).(eq_ind_r T (TLRef n) (\lambda (t0: T).(ex2 T (\lambda (t2:
189 T).(pc3 c0 (lift h x1 t2) (lift (S n) O u))) (\lambda (t2: T).(ty3 g e t0
190 t2)))) (let H10 \def (eq_ind nat x1 (\lambda (n0: nat).(drop h n0 c0 e)) H5
191 (S (plus n (minus x1 (S n)))) (lt_plus_minus n x1 H8)) in (ex3_2_ind T C
192 (\lambda (v: T).(\lambda (_: C).(eq T u (lift h (minus x1 (S n)) v))))
193 (\lambda (v: T).(\lambda (e0: C).(getl n e (CHead e0 (Bind Abst) v))))
194 (\lambda (_: T).(\lambda (e0: C).(drop h (minus x1 (S n)) d0 e0))) (ex2 T
195 (\lambda (t2: T).(pc3 c0 (lift h x1 t2) (lift (S n) O u))) (\lambda (t2:
196 T).(ty3 g e (TLRef n) t2))) (\lambda (x2: T).(\lambda (x3: C).(\lambda (H11:
197 (eq T u (lift h (minus x1 (S n)) x2))).(\lambda (H12: (getl n e (CHead x3
198 (Bind Abst) x2))).(\lambda (H13: (drop h (minus x1 (S n)) d0 x3)).(let H14
199 \def (eq_ind T u (\lambda (t0: T).(\forall (x4: T).(\forall (x5: nat).((eq T
200 t0 (lift h x5 x4)) \to (\forall (e0: C).((drop h x5 d0 e0) \to (ex2 T
201 (\lambda (t2: T).(pc3 d0 (lift h x5 t2) t)) (\lambda (t2: T).(ty3 g e0 x4
202 t2))))))))) H3 (lift h (minus x1 (S n)) x2) H11) in (let H15 \def (eq_ind T u
203 (\lambda (t0: T).(ty3 g d0 t0 t)) H2 (lift h (minus x1 (S n)) x2) H11) in
204 (eq_ind_r T (lift h (minus x1 (S n)) x2) (\lambda (t0: T).(ex2 T (\lambda
205 (t2: T).(pc3 c0 (lift h x1 t2) (lift (S n) O t0))) (\lambda (t2: T).(ty3 g e
206 (TLRef n) t2)))) (let H16 \def (H14 x2 (minus x1 (S n)) (refl_equal T (lift h
207 (minus x1 (S n)) x2)) x3 H13) in (ex2_ind T (\lambda (t2: T).(pc3 d0 (lift h
208 (minus x1 (S n)) t2) t)) (\lambda (t2: T).(ty3 g x3 x2 t2)) (ex2 T (\lambda
209 (t2: T).(pc3 c0 (lift h x1 t2) (lift (S n) O (lift h (minus x1 (S n)) x2))))
210 (\lambda (t2: T).(ty3 g e (TLRef n) t2))) (\lambda (x4: T).(\lambda (_: (pc3
211 d0 (lift h (minus x1 (S n)) x4) t)).(\lambda (H18: (ty3 g x3 x2
212 x4)).(eq_ind_r nat (plus (S n) (minus x1 (S n))) (\lambda (n0: nat).(ex2 T
213 (\lambda (t2: T).(pc3 c0 (lift h n0 t2) (lift (S n) O (lift h (minus n0 (S
214 n)) x2)))) (\lambda (t2: T).(ty3 g e (TLRef n) t2)))) (ex_intro2 T (\lambda
215 (t2: T).(pc3 c0 (lift h (plus (S n) (minus x1 (S n))) t2) (lift (S n) O (lift
216 h (minus (plus (S n) (minus x1 (S n))) (S n)) x2)))) (\lambda (t2: T).(ty3 g
217 e (TLRef n) t2)) (lift (S n) O x2) (eq_ind_r T (lift (S n) O (lift h (minus
218 x1 (S n)) x2)) (\lambda (t0: T).(pc3 c0 t0 (lift (S n) O (lift h (minus (plus
219 (S n) (minus x1 (S n))) (S n)) x2)))) (eq_ind nat x1 (\lambda (n0: nat).(pc3
220 c0 (lift (S n) O (lift h (minus x1 (S n)) x2)) (lift (S n) O (lift h (minus
221 n0 (S n)) x2)))) (pc3_refl c0 (lift (S n) O (lift h (minus x1 (S n)) x2)))
222 (plus (S n) (minus x1 (S n))) (le_plus_minus (S n) x1 H8)) (lift h (plus (S
223 n) (minus x1 (S n))) (lift (S n) O x2)) (lift_d x2 h (S n) (minus x1 (S n)) O
224 (le_O_n (minus x1 (S n))))) (ty3_abst g n e x3 x2 H12 x4 H18)) x1
225 (le_plus_minus (S n) x1 H8))))) H16)) u H11)))))))) (getl_drop_conf_lt Abst
226 c0 d0 u n H1 e h (minus x1 (S n)) H10))) x0 H9))) H7)) (\lambda (H7: (land
227 (le (plus x1 h) n) (eq T x0 (TLRef (minus n h))))).(land_ind (le (plus x1 h)
228 n) (eq T x0 (TLRef (minus n h))) (ex2 T (\lambda (t2: T).(pc3 c0 (lift h x1
229 t2) (lift (S n) O u))) (\lambda (t2: T).(ty3 g e x0 t2))) (\lambda (H8: (le
230 (plus x1 h) n)).(\lambda (H9: (eq T x0 (TLRef (minus n h)))).(eq_ind_r T
231 (TLRef (minus n h)) (\lambda (t0: T).(ex2 T (\lambda (t2: T).(pc3 c0 (lift h
232 x1 t2) (lift (S n) O u))) (\lambda (t2: T).(ty3 g e t0 t2)))) (ex_intro2 T
233 (\lambda (t2: T).(pc3 c0 (lift h x1 t2) (lift (S n) O u))) (\lambda (t2:
234 T).(ty3 g e (TLRef (minus n h)) t2)) (lift (S (minus n h)) O u) (eq_ind_r T
235 (lift (plus h (S (minus n h))) O u) (\lambda (t0: T).(pc3 c0 t0 (lift (S n) O
236 u))) (eq_ind nat (S (plus h (minus n h))) (\lambda (n0: nat).(pc3 c0 (lift n0
237 O u) (lift (S n) O u))) (eq_ind nat n (\lambda (n0: nat).(pc3 c0 (lift (S n0)
238 O u) (lift (S n) O u))) (pc3_refl c0 (lift (S n) O u)) (plus h (minus n h))
239 (le_plus_minus h n (le_trans h (plus x1 h) n (le_plus_r x1 h) H8))) (plus h
240 (S (minus n h))) (plus_n_Sm h (minus n h))) (lift h x1 (lift (S (minus n h))
241 O u)) (lift_free u (S (minus n h)) h O x1 (le_trans x1 (S (minus n h)) (plus
242 O (S (minus n h))) (le_S_minus x1 h n H8) (le_plus_r O (S (minus n h))))
243 (le_O_n x1))) (ty3_abst g (minus n h) e d0 u (getl_drop_conf_ge n (CHead d0
244 (Bind Abst) u) c0 H1 e h x1 H5 H8) t H2)) x0 H9))) H7)) H6))))))))))))))))
245 (\lambda (c0: C).(\lambda (u: T).(\lambda (t: T).(\lambda (H1: (ty3 g c0 u
246 t)).(\lambda (H2: ((\forall (x0: T).(\forall (x1: nat).((eq T u (lift h x1
247 x0)) \to (\forall (e: C).((drop h x1 c0 e) \to (ex2 T (\lambda (t2: T).(pc3
248 c0 (lift h x1 t2) t)) (\lambda (t2: T).(ty3 g e x0 t2)))))))))).(\lambda (b:
249 B).(\lambda (t2: T).(\lambda (t3: T).(\lambda (H3: (ty3 g (CHead c0 (Bind b)
250 u) t2 t3)).(\lambda (H4: ((\forall (x0: T).(\forall (x1: nat).((eq T t2 (lift
251 h x1 x0)) \to (\forall (e: C).((drop h x1 (CHead c0 (Bind b) u) e) \to (ex2 T
252 (\lambda (t4: T).(pc3 (CHead c0 (Bind b) u) (lift h x1 t4) t3)) (\lambda (t4:
253 T).(ty3 g e x0 t4)))))))))).(\lambda (x0: T).(\lambda (x1: nat).(\lambda (H5:
254 (eq T (THead (Bind b) u t2) (lift h x1 x0))).(\lambda (e: C).(\lambda (H6:
255 (drop h x1 c0 e)).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z: T).(eq T x0
256 (THead (Bind b) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T u (lift h x1
257 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T t2 (lift h (S x1) z)))) (ex2 T
258 (\lambda (t4: T).(pc3 c0 (lift h x1 t4) (THead (Bind b) u t3))) (\lambda (t4:
259 T).(ty3 g e x0 t4))) (\lambda (x2: T).(\lambda (x3: T).(\lambda (H7: (eq T x0
260 (THead (Bind b) x2 x3))).(\lambda (H8: (eq T u (lift h x1 x2))).(\lambda (H9:
261 (eq T t2 (lift h (S x1) x3))).(eq_ind_r T (THead (Bind b) x2 x3) (\lambda
262 (t0: T).(ex2 T (\lambda (t4: T).(pc3 c0 (lift h x1 t4) (THead (Bind b) u
263 t3))) (\lambda (t4: T).(ty3 g e t0 t4)))) (let H10 \def (eq_ind T t2 (\lambda
264 (t0: T).(\forall (x4: T).(\forall (x5: nat).((eq T t0 (lift h x5 x4)) \to
265 (\forall (e0: C).((drop h x5 (CHead c0 (Bind b) u) e0) \to (ex2 T (\lambda
266 (t4: T).(pc3 (CHead c0 (Bind b) u) (lift h x5 t4) t3)) (\lambda (t4: T).(ty3
267 g e0 x4 t4))))))))) H4 (lift h (S x1) x3) H9) in (let H11 \def (eq_ind T t2
268 (\lambda (t0: T).(ty3 g (CHead c0 (Bind b) u) t0 t3)) H3 (lift h (S x1) x3)
269 H9) in (let H12 \def (eq_ind T u (\lambda (t0: T).(ty3 g (CHead c0 (Bind b)
270 t0) (lift h (S x1) x3) t3)) H11 (lift h x1 x2) H8) in (let H13 \def (eq_ind T
271 u (\lambda (t0: T).(\forall (x4: T).(\forall (x5: nat).((eq T (lift h (S x1)
272 x3) (lift h x5 x4)) \to (\forall (e0: C).((drop h x5 (CHead c0 (Bind b) t0)
273 e0) \to (ex2 T (\lambda (t4: T).(pc3 (CHead c0 (Bind b) t0) (lift h x5 t4)
274 t3)) (\lambda (t4: T).(ty3 g e0 x4 t4))))))))) H10 (lift h x1 x2) H8) in (let
275 H14 \def (eq_ind T u (\lambda (t0: T).(\forall (x4: T).(\forall (x5:
276 nat).((eq T t0 (lift h x5 x4)) \to (\forall (e0: C).((drop h x5 c0 e0) \to
277 (ex2 T (\lambda (t4: T).(pc3 c0 (lift h x5 t4) t)) (\lambda (t4: T).(ty3 g e0
278 x4 t4))))))))) H2 (lift h x1 x2) H8) in (let H15 \def (eq_ind T u (\lambda
279 (t0: T).(ty3 g c0 t0 t)) H1 (lift h x1 x2) H8) in (eq_ind_r T (lift h x1 x2)
280 (\lambda (t0: T).(ex2 T (\lambda (t4: T).(pc3 c0 (lift h x1 t4) (THead (Bind
281 b) t0 t3))) (\lambda (t4: T).(ty3 g e (THead (Bind b) x2 x3) t4)))) (let H16
282 \def (H14 x2 x1 (refl_equal T (lift h x1 x2)) e H6) in (ex2_ind T (\lambda
283 (t4: T).(pc3 c0 (lift h x1 t4) t)) (\lambda (t4: T).(ty3 g e x2 t4)) (ex2 T
284 (\lambda (t4: T).(pc3 c0 (lift h x1 t4) (THead (Bind b) (lift h x1 x2) t3)))
285 (\lambda (t4: T).(ty3 g e (THead (Bind b) x2 x3) t4))) (\lambda (x4:
286 T).(\lambda (_: (pc3 c0 (lift h x1 x4) t)).(\lambda (H18: (ty3 g e x2
287 x4)).(let H19 \def (H13 x3 (S x1) (refl_equal T (lift h (S x1) x3)) (CHead e
288 (Bind b) x2) (drop_skip_bind h x1 c0 e H6 b x2)) in (ex2_ind T (\lambda (t4:
289 T).(pc3 (CHead c0 (Bind b) (lift h x1 x2)) (lift h (S x1) t4) t3)) (\lambda
290 (t4: T).(ty3 g (CHead e (Bind b) x2) x3 t4)) (ex2 T (\lambda (t4: T).(pc3 c0
291 (lift h x1 t4) (THead (Bind b) (lift h x1 x2) t3))) (\lambda (t4: T).(ty3 g e
292 (THead (Bind b) x2 x3) t4))) (\lambda (x5: T).(\lambda (H20: (pc3 (CHead c0
293 (Bind b) (lift h x1 x2)) (lift h (S x1) x5) t3)).(\lambda (H21: (ty3 g (CHead
294 e (Bind b) x2) x3 x5)).(ex_ind T (\lambda (t0: T).(ty3 g (CHead e (Bind b)
295 x2) x5 t0)) (ex2 T (\lambda (t4: T).(pc3 c0 (lift h x1 t4) (THead (Bind b)
296 (lift h x1 x2) t3))) (\lambda (t4: T).(ty3 g e (THead (Bind b) x2 x3) t4)))
297 (\lambda (x6: T).(\lambda (_: (ty3 g (CHead e (Bind b) x2) x5 x6)).(ex_intro2
298 T (\lambda (t4: T).(pc3 c0 (lift h x1 t4) (THead (Bind b) (lift h x1 x2)
299 t3))) (\lambda (t4: T).(ty3 g e (THead (Bind b) x2 x3) t4)) (THead (Bind b)
300 x2 x5) (eq_ind_r T (THead (Bind b) (lift h x1 x2) (lift h (S x1) x5))
301 (\lambda (t0: T).(pc3 c0 t0 (THead (Bind b) (lift h x1 x2) t3))) (pc3_head_2
302 c0 (lift h x1 x2) (lift h (S x1) x5) t3 (Bind b) H20) (lift h x1 (THead (Bind
303 b) x2 x5)) (lift_bind b x2 x5 h x1)) (ty3_bind g e x2 x4 H18 b x3 x5 H21))))
304 (ty3_correct g (CHead e (Bind b) x2) x3 x5 H21))))) H19))))) H16)) u
305 H8))))))) x0 H7)))))) (lift_gen_bind b u t2 x0 h x1 H5)))))))))))))))))
306 (\lambda (c0: C).(\lambda (w: T).(\lambda (u: T).(\lambda (H1: (ty3 g c0 w
307 u)).(\lambda (H2: ((\forall (x0: T).(\forall (x1: nat).((eq T w (lift h x1
308 x0)) \to (\forall (e: C).((drop h x1 c0 e) \to (ex2 T (\lambda (t2: T).(pc3
309 c0 (lift h x1 t2) u)) (\lambda (t2: T).(ty3 g e x0 t2)))))))))).(\lambda (v:
310 T).(\lambda (t: T).(\lambda (H3: (ty3 g c0 v (THead (Bind Abst) u
311 t))).(\lambda (H4: ((\forall (x0: T).(\forall (x1: nat).((eq T v (lift h x1
312 x0)) \to (\forall (e: C).((drop h x1 c0 e) \to (ex2 T (\lambda (t2: T).(pc3
313 c0 (lift h x1 t2) (THead (Bind Abst) u t))) (\lambda (t2: T).(ty3 g e x0
314 t2)))))))))).(\lambda (x0: T).(\lambda (x1: nat).(\lambda (H5: (eq T (THead
315 (Flat Appl) w v) (lift h x1 x0))).(\lambda (e: C).(\lambda (H6: (drop h x1 c0
316 e)).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z: T).(eq T x0 (THead (Flat
317 Appl) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T w (lift h x1 y0))))
318 (\lambda (_: T).(\lambda (z: T).(eq T v (lift h x1 z)))) (ex2 T (\lambda (t2:
319 T).(pc3 c0 (lift h x1 t2) (THead (Flat Appl) w (THead (Bind Abst) u t))))
320 (\lambda (t2: T).(ty3 g e x0 t2))) (\lambda (x2: T).(\lambda (x3: T).(\lambda
321 (H7: (eq T x0 (THead (Flat Appl) x2 x3))).(\lambda (H8: (eq T w (lift h x1
322 x2))).(\lambda (H9: (eq T v (lift h x1 x3))).(eq_ind_r T (THead (Flat Appl)
323 x2 x3) (\lambda (t0: T).(ex2 T (\lambda (t2: T).(pc3 c0 (lift h x1 t2) (THead
324 (Flat Appl) w (THead (Bind Abst) u t)))) (\lambda (t2: T).(ty3 g e t0 t2))))
325 (let H10 \def (eq_ind T v (\lambda (t0: T).(\forall (x4: T).(\forall (x5:
326 nat).((eq T t0 (lift h x5 x4)) \to (\forall (e0: C).((drop h x5 c0 e0) \to
327 (ex2 T (\lambda (t2: T).(pc3 c0 (lift h x5 t2) (THead (Bind Abst) u t)))
328 (\lambda (t2: T).(ty3 g e0 x4 t2))))))))) H4 (lift h x1 x3) H9) in (let H11
329 \def (eq_ind T v (\lambda (t0: T).(ty3 g c0 t0 (THead (Bind Abst) u t))) H3
330 (lift h x1 x3) H9) in (let H12 \def (eq_ind T w (\lambda (t0: T).(\forall
331 (x4: T).(\forall (x5: nat).((eq T t0 (lift h x5 x4)) \to (\forall (e0:
332 C).((drop h x5 c0 e0) \to (ex2 T (\lambda (t2: T).(pc3 c0 (lift h x5 t2) u))
333 (\lambda (t2: T).(ty3 g e0 x4 t2))))))))) H2 (lift h x1 x2) H8) in (let H13
334 \def (eq_ind T w (\lambda (t0: T).(ty3 g c0 t0 u)) H1 (lift h x1 x2) H8) in
335 (eq_ind_r T (lift h x1 x2) (\lambda (t0: T).(ex2 T (\lambda (t2: T).(pc3 c0
336 (lift h x1 t2) (THead (Flat Appl) t0 (THead (Bind Abst) u t)))) (\lambda (t2:
337 T).(ty3 g e (THead (Flat Appl) x2 x3) t2)))) (let H14 \def (H12 x2 x1
338 (refl_equal T (lift h x1 x2)) e H6) in (ex2_ind T (\lambda (t2: T).(pc3 c0
339 (lift h x1 t2) u)) (\lambda (t2: T).(ty3 g e x2 t2)) (ex2 T (\lambda (t2:
340 T).(pc3 c0 (lift h x1 t2) (THead (Flat Appl) (lift h x1 x2) (THead (Bind
341 Abst) u t)))) (\lambda (t2: T).(ty3 g e (THead (Flat Appl) x2 x3) t2)))
342 (\lambda (x4: T).(\lambda (H15: (pc3 c0 (lift h x1 x4) u)).(\lambda (H16:
343 (ty3 g e x2 x4)).(let H17 \def (H10 x3 x1 (refl_equal T (lift h x1 x3)) e H6)
344 in (ex2_ind T (\lambda (t2: T).(pc3 c0 (lift h x1 t2) (THead (Bind Abst) u
345 t))) (\lambda (t2: T).(ty3 g e x3 t2)) (ex2 T (\lambda (t2: T).(pc3 c0 (lift
346 h x1 t2) (THead (Flat Appl) (lift h x1 x2) (THead (Bind Abst) u t))))
347 (\lambda (t2: T).(ty3 g e (THead (Flat Appl) x2 x3) t2))) (\lambda (x5:
348 T).(\lambda (H18: (pc3 c0 (lift h x1 x5) (THead (Bind Abst) u t))).(\lambda
349 (H19: (ty3 g e x3 x5)).(ex3_2_ind T T (\lambda (u1: T).(\lambda (t2: T).(pr3
350 e x5 (THead (Bind Abst) u1 t2)))) (\lambda (u1: T).(\lambda (_: T).(pr3 c0 u
351 (lift h x1 u1)))) (\lambda (_: T).(\lambda (t2: T).(\forall (b: B).(\forall
352 (u0: T).(pr3 (CHead c0 (Bind b) u0) t (lift h (S x1) t2)))))) (ex2 T (\lambda
353 (t2: T).(pc3 c0 (lift h x1 t2) (THead (Flat Appl) (lift h x1 x2) (THead (Bind
354 Abst) u t)))) (\lambda (t2: T).(ty3 g e (THead (Flat Appl) x2 x3) t2)))
355 (\lambda (x6: T).(\lambda (x7: T).(\lambda (H20: (pr3 e x5 (THead (Bind Abst)
356 x6 x7))).(\lambda (H21: (pr3 c0 u (lift h x1 x6))).(\lambda (H22: ((\forall
357 (b: B).(\forall (u0: T).(pr3 (CHead c0 (Bind b) u0) t (lift h (S x1)
358 x7)))))).(ex_ind T (\lambda (t0: T).(ty3 g e x5 t0)) (ex2 T (\lambda (t2:
359 T).(pc3 c0 (lift h x1 t2) (THead (Flat Appl) (lift h x1 x2) (THead (Bind
360 Abst) u t)))) (\lambda (t2: T).(ty3 g e (THead (Flat Appl) x2 x3) t2)))
361 (\lambda (x8: T).(\lambda (H23: (ty3 g e x5 x8)).(let H_y \def (ty3_sred_pr3
362 e x5 (THead (Bind Abst) x6 x7) H20 g x8 H23) in (ex3_2_ind T T (\lambda (t2:
363 T).(\lambda (_: T).(pc3 e (THead (Bind Abst) x6 t2) x8))) (\lambda (_:
364 T).(\lambda (t0: T).(ty3 g e x6 t0))) (\lambda (t2: T).(\lambda (_: T).(ty3 g
365 (CHead e (Bind Abst) x6) x7 t2))) (ex2 T (\lambda (t2: T).(pc3 c0 (lift h x1
366 t2) (THead (Flat Appl) (lift h x1 x2) (THead (Bind Abst) u t)))) (\lambda
367 (t2: T).(ty3 g e (THead (Flat Appl) x2 x3) t2))) (\lambda (x9: T).(\lambda
368 (x10: T).(\lambda (_: (pc3 e (THead (Bind Abst) x6 x9) x8)).(\lambda (H25:
369 (ty3 g e x6 x10)).(\lambda (H26: (ty3 g (CHead e (Bind Abst) x6) x7
370 x9)).(ex_intro2 T (\lambda (t2: T).(pc3 c0 (lift h x1 t2) (THead (Flat Appl)
371 (lift h x1 x2) (THead (Bind Abst) u t)))) (\lambda (t2: T).(ty3 g e (THead
372 (Flat Appl) x2 x3) t2)) (THead (Flat Appl) x2 (THead (Bind Abst) x6 x7))
373 (eq_ind_r T (THead (Flat Appl) (lift h x1 x2) (lift h x1 (THead (Bind Abst)
374 x6 x7))) (\lambda (t0: T).(pc3 c0 t0 (THead (Flat Appl) (lift h x1 x2) (THead
375 (Bind Abst) u t)))) (pc3_thin_dx c0 (lift h x1 (THead (Bind Abst) x6 x7))
376 (THead (Bind Abst) u t) (eq_ind_r T (THead (Bind Abst) (lift h x1 x6) (lift h
377 (S x1) x7)) (\lambda (t0: T).(pc3 c0 t0 (THead (Bind Abst) u t)))
378 (pc3_head_21 c0 (lift h x1 x6) u (pc3_pr3_x c0 (lift h x1 x6) u H21) (Bind
379 Abst) (lift h (S x1) x7) t (pc3_pr3_x (CHead c0 (Bind Abst) (lift h x1 x6))
380 (lift h (S x1) x7) t (H22 Abst (lift h x1 x6)))) (lift h x1 (THead (Bind
381 Abst) x6 x7)) (lift_bind Abst x6 x7 h x1)) (lift h x1 x2) Appl) (lift h x1
382 (THead (Flat Appl) x2 (THead (Bind Abst) x6 x7))) (lift_flat Appl x2 (THead
383 (Bind Abst) x6 x7) h x1)) (ty3_appl g e x2 x6 (ty3_conv g e x6 x10 H25 x2 x4
384 H16 (pc3_gen_lift c0 x4 x6 h x1 (pc3_t u c0 (lift h x1 x4) H15 (lift h x1 x6)
385 (pc3_pr3_r c0 u (lift h x1 x6) H21)) e H6)) x3 x7 (ty3_conv g e (THead (Bind
386 Abst) x6 x7) (THead (Bind Abst) x6 x9) (ty3_bind g e x6 x10 H25 Abst x7 x9
387 H26) x3 x5 H19 (pc3_pr3_r e x5 (THead (Bind Abst) x6 x7) H20)))))))))
388 (ty3_gen_bind g Abst e x6 x7 x8 H_y))))) (ty3_correct g e x3 x5 H19)))))))
389 (pc3_gen_lift_abst c0 x5 t u h x1 H18 e H6))))) H17))))) H14)) w H8))))) x0
390 H7)))))) (lift_gen_flat Appl w v x0 h x1 H5)))))))))))))))) (\lambda (c0:
391 C).(\lambda (t2: T).(\lambda (t3: T).(\lambda (H1: (ty3 g c0 t2 t3)).(\lambda
392 (H2: ((\forall (x0: T).(\forall (x1: nat).((eq T t2 (lift h x1 x0)) \to
393 (\forall (e: C).((drop h x1 c0 e) \to (ex2 T (\lambda (t4: T).(pc3 c0 (lift h
394 x1 t4) t3)) (\lambda (t4: T).(ty3 g e x0 t4)))))))))).(\lambda (t0:
395 T).(\lambda (H3: (ty3 g c0 t3 t0)).(\lambda (H4: ((\forall (x0: T).(\forall
396 (x1: nat).((eq T t3 (lift h x1 x0)) \to (\forall (e: C).((drop h x1 c0 e) \to
397 (ex2 T (\lambda (t4: T).(pc3 c0 (lift h x1 t4) t0)) (\lambda (t4: T).(ty3 g e
398 x0 t4)))))))))).(\lambda (x0: T).(\lambda (x1: nat).(\lambda (H5: (eq T
399 (THead (Flat Cast) t3 t2) (lift h x1 x0))).(\lambda (e: C).(\lambda (H6:
400 (drop h x1 c0 e)).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z: T).(eq T x0
401 (THead (Flat Cast) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T t3 (lift h
402 x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T t2 (lift h x1 z)))) (ex2 T
403 (\lambda (t4: T).(pc3 c0 (lift h x1 t4) (THead (Flat Cast) t0 t3))) (\lambda
404 (t4: T).(ty3 g e x0 t4))) (\lambda (x2: T).(\lambda (x3: T).(\lambda (H7: (eq
405 T x0 (THead (Flat Cast) x2 x3))).(\lambda (H8: (eq T t3 (lift h x1
406 x2))).(\lambda (H9: (eq T t2 (lift h x1 x3))).(eq_ind_r T (THead (Flat Cast)
407 x2 x3) (\lambda (t: T).(ex2 T (\lambda (t4: T).(pc3 c0 (lift h x1 t4) (THead
408 (Flat Cast) t0 t3))) (\lambda (t4: T).(ty3 g e t t4)))) (let H10 \def (eq_ind
409 T t3 (\lambda (t: T).(\forall (x4: T).(\forall (x5: nat).((eq T t (lift h x5
410 x4)) \to (\forall (e0: C).((drop h x5 c0 e0) \to (ex2 T (\lambda (t4: T).(pc3
411 c0 (lift h x5 t4) t0)) (\lambda (t4: T).(ty3 g e0 x4 t4))))))))) H4 (lift h
412 x1 x2) H8) in (let H11 \def (eq_ind T t3 (\lambda (t: T).(ty3 g c0 t t0)) H3
413 (lift h x1 x2) H8) in (let H12 \def (eq_ind T t3 (\lambda (t: T).(\forall
414 (x4: T).(\forall (x5: nat).((eq T t2 (lift h x5 x4)) \to (\forall (e0:
415 C).((drop h x5 c0 e0) \to (ex2 T (\lambda (t4: T).(pc3 c0 (lift h x5 t4) t))
416 (\lambda (t4: T).(ty3 g e0 x4 t4))))))))) H2 (lift h x1 x2) H8) in (let H13
417 \def (eq_ind T t3 (\lambda (t: T).(ty3 g c0 t2 t)) H1 (lift h x1 x2) H8) in
418 (eq_ind_r T (lift h x1 x2) (\lambda (t: T).(ex2 T (\lambda (t4: T).(pc3 c0
419 (lift h x1 t4) (THead (Flat Cast) t0 t))) (\lambda (t4: T).(ty3 g e (THead
420 (Flat Cast) x2 x3) t4)))) (let H14 \def (eq_ind T t2 (\lambda (t: T).(ty3 g
421 c0 t (lift h x1 x2))) H13 (lift h x1 x3) H9) in (let H15 \def (eq_ind T t2
422 (\lambda (t: T).(\forall (x4: T).(\forall (x5: nat).((eq T t (lift h x5 x4))
423 \to (\forall (e0: C).((drop h x5 c0 e0) \to (ex2 T (\lambda (t4: T).(pc3 c0
424 (lift h x5 t4) (lift h x1 x2))) (\lambda (t4: T).(ty3 g e0 x4 t4))))))))) H12
425 (lift h x1 x3) H9) in (let H16 \def (H15 x3 x1 (refl_equal T (lift h x1 x3))
426 e H6) in (ex2_ind T (\lambda (t4: T).(pc3 c0 (lift h x1 t4) (lift h x1 x2)))
427 (\lambda (t4: T).(ty3 g e x3 t4)) (ex2 T (\lambda (t4: T).(pc3 c0 (lift h x1
428 t4) (THead (Flat Cast) t0 (lift h x1 x2)))) (\lambda (t4: T).(ty3 g e (THead
429 (Flat Cast) x2 x3) t4))) (\lambda (x4: T).(\lambda (H17: (pc3 c0 (lift h x1
430 x4) (lift h x1 x2))).(\lambda (H18: (ty3 g e x3 x4)).(let H19 \def (H10 x2 x1
431 (refl_equal T (lift h x1 x2)) e H6) in (ex2_ind T (\lambda (t4: T).(pc3 c0
432 (lift h x1 t4) t0)) (\lambda (t4: T).(ty3 g e x2 t4)) (ex2 T (\lambda (t4:
433 T).(pc3 c0 (lift h x1 t4) (THead (Flat Cast) t0 (lift h x1 x2)))) (\lambda
434 (t4: T).(ty3 g e (THead (Flat Cast) x2 x3) t4))) (\lambda (x5: T).(\lambda
435 (H20: (pc3 c0 (lift h x1 x5) t0)).(\lambda (H21: (ty3 g e x2 x5)).(ex_intro2
436 T (\lambda (t4: T).(pc3 c0 (lift h x1 t4) (THead (Flat Cast) t0 (lift h x1
437 x2)))) (\lambda (t4: T).(ty3 g e (THead (Flat Cast) x2 x3) t4)) (THead (Flat
438 Cast) x5 x2) (eq_ind_r T (THead (Flat Cast) (lift h x1 x5) (lift h x1 x2))
439 (\lambda (t: T).(pc3 c0 t (THead (Flat Cast) t0 (lift h x1 x2)))) (pc3_head_1
440 c0 (lift h x1 x5) t0 H20 (Flat Cast) (lift h x1 x2)) (lift h x1 (THead (Flat
441 Cast) x5 x2)) (lift_flat Cast x5 x2 h x1)) (ty3_cast g e x3 x2 (ty3_conv g e
442 x2 x5 H21 x3 x4 H18 (pc3_gen_lift c0 x4 x2 h x1 H17 e H6)) x5 H21)))))
443 H19))))) H16)))) t3 H8))))) x0 H7)))))) (lift_gen_flat Cast t3 t2 x0 h x1
444 H5))))))))))))))) c y x H0))))) H))))))).
447 \forall (g: G).(\forall (c: C).(\forall (u: T).(\forall (t1: T).((ty3 g c u
448 t1) \to (\forall (t2: T).((pr3 c t1 t2) \to (ty3 g c u t2)))))))
450 \lambda (g: G).(\lambda (c: C).(\lambda (u: T).(\lambda (t1: T).(\lambda (H:
451 (ty3 g c u t1)).(\lambda (t2: T).(\lambda (H0: (pr3 c t1 t2)).(ex_ind T
452 (\lambda (t: T).(ty3 g c t1 t)) (ty3 g c u t2) (\lambda (x: T).(\lambda (H1:
453 (ty3 g c t1 x)).(let H_y \def (ty3_sred_pr3 c t1 t2 H0 g x H1) in (ty3_conv g
454 c t2 x H_y u t1 H (pc3_pr3_r c t1 t2 H0))))) (ty3_correct g c u t1 H)))))))).
456 theorem ty3_sconv_pc3:
457 \forall (g: G).(\forall (c: C).(\forall (u1: T).(\forall (t1: T).((ty3 g c
458 u1 t1) \to (\forall (u2: T).(\forall (t2: T).((ty3 g c u2 t2) \to ((pc3 c u1
459 u2) \to (pc3 c t1 t2)))))))))
461 \lambda (g: G).(\lambda (c: C).(\lambda (u1: T).(\lambda (t1: T).(\lambda
462 (H: (ty3 g c u1 t1)).(\lambda (u2: T).(\lambda (t2: T).(\lambda (H0: (ty3 g c
463 u2 t2)).(\lambda (H1: (pc3 c u1 u2)).(let H2 \def H1 in (ex2_ind T (\lambda
464 (t: T).(pr3 c u1 t)) (\lambda (t: T).(pr3 c u2 t)) (pc3 c t1 t2) (\lambda (x:
465 T).(\lambda (H3: (pr3 c u1 x)).(\lambda (H4: (pr3 c u2 x)).(let H_y \def
466 (ty3_sred_pr3 c u2 x H4 g t2 H0) in (let H_y0 \def (ty3_sred_pr3 c u1 x H3 g
467 t1 H) in (ty3_unique g c x t1 H_y0 t2 H_y)))))) H2)))))))))).
470 \forall (g: G).(\forall (c: C).(\forall (t1: T).(\forall (t0: T).((ty3 g c
471 t1 t0) \to (\forall (t2: T).((pr3 c t1 t2) \to (\forall (t: T).((ty3 g c t2
472 t) \to (ty3 g c t1 t)))))))))
474 \lambda (g: G).(\lambda (c: C).(\lambda (t1: T).(\lambda (t0: T).(\lambda
475 (H: (ty3 g c t1 t0)).(\lambda (t2: T).(\lambda (H0: (pr3 c t1 t2)).(\lambda
476 (t: T).(\lambda (H1: (ty3 g c t2 t)).(ex_ind T (\lambda (t3: T).(ty3 g c t
477 t3)) (ty3 g c t1 t) (\lambda (x: T).(\lambda (H2: (ty3 g c t x)).(ty3_conv g
478 c t x H2 t1 t0 H (ty3_unique g c t2 t0 (ty3_sred_pr3 c t1 t2 H0 g t0 H) t
479 H1)))) (ty3_correct g c t2 t H1)))))))))).
482 \forall (g: G).(\forall (c: C).(\forall (u1: T).(\forall (t1: T).((ty3 g c
483 u1 t1) \to (\forall (u2: T).(\forall (t2: T).((ty3 g c u2 t2) \to ((pc3 c u1
484 u2) \to (ty3 g c u1 t2)))))))))
486 \lambda (g: G).(\lambda (c: C).(\lambda (u1: T).(\lambda (t1: T).(\lambda
487 (H: (ty3 g c u1 t1)).(\lambda (u2: T).(\lambda (t2: T).(\lambda (H0: (ty3 g c
488 u2 t2)).(\lambda (H1: (pc3 c u1 u2)).(let H2 \def H1 in (ex2_ind T (\lambda
489 (t: T).(pr3 c u1 t)) (\lambda (t: T).(pr3 c u2 t)) (ty3 g c u1 t2) (\lambda
490 (x: T).(\lambda (H3: (pr3 c u1 x)).(\lambda (H4: (pr3 c u2 x)).(ty3_sred_back
491 g c u1 t1 H x H3 t2 (ty3_sred_pr3 c u2 x H4 g t2 H0))))) H2)))))))))).