1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 include "basic_1/wcpr0/defs.ma".
19 implied let rec wcpr0_ind (P: (C \to (C \to Prop))) (f: (\forall (c: C).(P c
20 c))) (f0: (\forall (c1: C).(\forall (c2: C).((wcpr0 c1 c2) \to ((P c1 c2) \to
21 (\forall (u1: T).(\forall (u2: T).((pr0 u1 u2) \to (\forall (k: K).(P (CHead
22 c1 k u1) (CHead c2 k u2))))))))))) (c: C) (c0: C) (w: wcpr0 c c0) on w: P c
23 c0 \def match w with [(wcpr0_refl c1) \Rightarrow (f c1) | (wcpr0_comp c1 c2
24 w0 u1 u2 p k) \Rightarrow (f0 c1 c2 w0 ((wcpr0_ind P f f0) c1 c2 w0) u1 u2 p
28 \forall (x: C).(\forall (n: nat).((wcpr0 (CSort n) x) \to (eq C x (CSort
31 \lambda (x: C).(\lambda (n: nat).(\lambda (H: (wcpr0 (CSort n)
32 x)).(insert_eq C (CSort n) (\lambda (c: C).(wcpr0 c x)) (\lambda (c: C).(eq C
33 x c)) (\lambda (y: C).(\lambda (H0: (wcpr0 y x)).(wcpr0_ind (\lambda (c:
34 C).(\lambda (c0: C).((eq C c (CSort n)) \to (eq C c0 c)))) (\lambda (c:
35 C).(\lambda (H1: (eq C c (CSort n))).(let H2 \def (f_equal C C (\lambda (e:
36 C).e) c (CSort n) H1) in (eq_ind_r C (CSort n) (\lambda (c0: C).(eq C c0 c0))
37 (refl_equal C (CSort n)) c H2)))) (\lambda (c1: C).(\lambda (c2: C).(\lambda
38 (_: (wcpr0 c1 c2)).(\lambda (_: (((eq C c1 (CSort n)) \to (eq C c2
39 c1)))).(\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda
40 (k: K).(\lambda (H4: (eq C (CHead c1 k u1) (CSort n))).(let H5 \def (eq_ind C
41 (CHead c1 k u1) (\lambda (ee: C).(match ee with [(CSort _) \Rightarrow False
42 | (CHead _ _ _) \Rightarrow True])) I (CSort n) H4) in (False_ind (eq C
43 (CHead c2 k u2) (CHead c1 k u1)) H5))))))))))) y x H0))) H))).
46 \forall (k: K).(\forall (c1: C).(\forall (x: C).(\forall (u1: T).((wcpr0
47 (CHead c1 k u1) x) \to (or (eq C x (CHead c1 k u1)) (ex3_2 C T (\lambda (c2:
48 C).(\lambda (u2: T).(eq C x (CHead c2 k u2)))) (\lambda (c2: C).(\lambda (_:
49 T).(wcpr0 c1 c2))) (\lambda (_: C).(\lambda (u2: T).(pr0 u1 u2)))))))))
51 \lambda (k: K).(\lambda (c1: C).(\lambda (x: C).(\lambda (u1: T).(\lambda
52 (H: (wcpr0 (CHead c1 k u1) x)).(insert_eq C (CHead c1 k u1) (\lambda (c:
53 C).(wcpr0 c x)) (\lambda (c: C).(or (eq C x c) (ex3_2 C T (\lambda (c2:
54 C).(\lambda (u2: T).(eq C x (CHead c2 k u2)))) (\lambda (c2: C).(\lambda (_:
55 T).(wcpr0 c1 c2))) (\lambda (_: C).(\lambda (u2: T).(pr0 u1 u2)))))) (\lambda
56 (y: C).(\lambda (H0: (wcpr0 y x)).(wcpr0_ind (\lambda (c: C).(\lambda (c0:
57 C).((eq C c (CHead c1 k u1)) \to (or (eq C c0 c) (ex3_2 C T (\lambda (c2:
58 C).(\lambda (u2: T).(eq C c0 (CHead c2 k u2)))) (\lambda (c2: C).(\lambda (_:
59 T).(wcpr0 c1 c2))) (\lambda (_: C).(\lambda (u2: T).(pr0 u1 u2))))))))
60 (\lambda (c: C).(\lambda (H1: (eq C c (CHead c1 k u1))).(let H2 \def (f_equal
61 C C (\lambda (e: C).e) c (CHead c1 k u1) H1) in (eq_ind_r C (CHead c1 k u1)
62 (\lambda (c0: C).(or (eq C c0 c0) (ex3_2 C T (\lambda (c2: C).(\lambda (u2:
63 T).(eq C c0 (CHead c2 k u2)))) (\lambda (c2: C).(\lambda (_: T).(wcpr0 c1
64 c2))) (\lambda (_: C).(\lambda (u2: T).(pr0 u1 u2)))))) (or_introl (eq C
65 (CHead c1 k u1) (CHead c1 k u1)) (ex3_2 C T (\lambda (c2: C).(\lambda (u2:
66 T).(eq C (CHead c1 k u1) (CHead c2 k u2)))) (\lambda (c2: C).(\lambda (_:
67 T).(wcpr0 c1 c2))) (\lambda (_: C).(\lambda (u2: T).(pr0 u1 u2))))
68 (refl_equal C (CHead c1 k u1))) c H2)))) (\lambda (c0: C).(\lambda (c2:
69 C).(\lambda (H1: (wcpr0 c0 c2)).(\lambda (H2: (((eq C c0 (CHead c1 k u1)) \to
70 (or (eq C c2 c0) (ex3_2 C T (\lambda (c3: C).(\lambda (u2: T).(eq C c2 (CHead
71 c3 k u2)))) (\lambda (c3: C).(\lambda (_: T).(wcpr0 c1 c3))) (\lambda (_:
72 C).(\lambda (u2: T).(pr0 u1 u2)))))))).(\lambda (u0: T).(\lambda (u2:
73 T).(\lambda (H3: (pr0 u0 u2)).(\lambda (k0: K).(\lambda (H4: (eq C (CHead c0
74 k0 u0) (CHead c1 k u1))).(let H5 \def (f_equal C C (\lambda (e: C).(match e
75 with [(CSort _) \Rightarrow c0 | (CHead c _ _) \Rightarrow c])) (CHead c0 k0
76 u0) (CHead c1 k u1) H4) in ((let H6 \def (f_equal C K (\lambda (e: C).(match
77 e with [(CSort _) \Rightarrow k0 | (CHead _ k1 _) \Rightarrow k1])) (CHead c0
78 k0 u0) (CHead c1 k u1) H4) in ((let H7 \def (f_equal C T (\lambda (e:
79 C).(match e with [(CSort _) \Rightarrow u0 | (CHead _ _ t) \Rightarrow t]))
80 (CHead c0 k0 u0) (CHead c1 k u1) H4) in (\lambda (H8: (eq K k0 k)).(\lambda
81 (H9: (eq C c0 c1)).(eq_ind_r K k (\lambda (k1: K).(or (eq C (CHead c2 k1 u2)
82 (CHead c0 k1 u0)) (ex3_2 C T (\lambda (c3: C).(\lambda (u3: T).(eq C (CHead
83 c2 k1 u2) (CHead c3 k u3)))) (\lambda (c3: C).(\lambda (_: T).(wcpr0 c1 c3)))
84 (\lambda (_: C).(\lambda (u3: T).(pr0 u1 u3)))))) (let H10 \def (eq_ind T u0
85 (\lambda (t: T).(pr0 t u2)) H3 u1 H7) in (eq_ind_r T u1 (\lambda (t: T).(or
86 (eq C (CHead c2 k u2) (CHead c0 k t)) (ex3_2 C T (\lambda (c3: C).(\lambda
87 (u3: T).(eq C (CHead c2 k u2) (CHead c3 k u3)))) (\lambda (c3: C).(\lambda
88 (_: T).(wcpr0 c1 c3))) (\lambda (_: C).(\lambda (u3: T).(pr0 u1 u3)))))) (let
89 H11 \def (eq_ind C c0 (\lambda (c: C).((eq C c (CHead c1 k u1)) \to (or (eq C
90 c2 c) (ex3_2 C T (\lambda (c3: C).(\lambda (u3: T).(eq C c2 (CHead c3 k
91 u3)))) (\lambda (c3: C).(\lambda (_: T).(wcpr0 c1 c3))) (\lambda (_:
92 C).(\lambda (u3: T).(pr0 u1 u3))))))) H2 c1 H9) in (let H12 \def (eq_ind C c0
93 (\lambda (c: C).(wcpr0 c c2)) H1 c1 H9) in (eq_ind_r C c1 (\lambda (c: C).(or
94 (eq C (CHead c2 k u2) (CHead c k u1)) (ex3_2 C T (\lambda (c3: C).(\lambda
95 (u3: T).(eq C (CHead c2 k u2) (CHead c3 k u3)))) (\lambda (c3: C).(\lambda
96 (_: T).(wcpr0 c1 c3))) (\lambda (_: C).(\lambda (u3: T).(pr0 u1 u3))))))
97 (or_intror (eq C (CHead c2 k u2) (CHead c1 k u1)) (ex3_2 C T (\lambda (c3:
98 C).(\lambda (u3: T).(eq C (CHead c2 k u2) (CHead c3 k u3)))) (\lambda (c3:
99 C).(\lambda (_: T).(wcpr0 c1 c3))) (\lambda (_: C).(\lambda (u3: T).(pr0 u1
100 u3)))) (ex3_2_intro C T (\lambda (c3: C).(\lambda (u3: T).(eq C (CHead c2 k
101 u2) (CHead c3 k u3)))) (\lambda (c3: C).(\lambda (_: T).(wcpr0 c1 c3)))
102 (\lambda (_: C).(\lambda (u3: T).(pr0 u1 u3))) c2 u2 (refl_equal C (CHead c2
103 k u2)) H12 H10)) c0 H9))) u0 H7)) k0 H8)))) H6)) H5))))))))))) y x H0)))