]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/computation/cprs.ma
- bugfixed "aacr" allows to remove historical eta-conversions
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / computation / cprs.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/predstar_4.ma".
16 include "basic_2/reduction/cnr.ma".
17
18 (* CONTEXT-SENSITIVE PARALLEL COMPUTATION ON TERMS **************************)
19
20 (* Basic_1: includes: pr1_pr0 *)
21 definition cprs: relation4 genv lenv term term ≝
22                  λG. LTC … (cpr G).
23
24 interpretation "context-sensitive parallel computation (term)"
25    'PRedStar G L T1 T2 = (cprs G L T1 T2).
26
27 (* Basic eliminators ********************************************************)
28
29 lemma cprs_ind: ∀G,L,T1. ∀R:predicate term. R T1 →
30                 (∀T,T2. ⦃G, L⦄ ⊢ T1 ➡* T → ⦃G, L⦄ ⊢ T ➡ T2 → R T → R T2) →
31                 ∀T2. ⦃G, L⦄ ⊢ T1 ➡* T2 → R T2.
32 #G #L #T1 #R #HT1 #IHT1 #T2 #HT12
33 @(TC_star_ind … HT1 IHT1 … HT12) //
34 qed-.
35
36 lemma cprs_ind_dx: ∀G,L,T2. ∀R:predicate term. R T2 →
37                    (∀T1,T. ⦃G, L⦄ ⊢ T1 ➡ T → ⦃G, L⦄ ⊢ T ➡* T2 → R T → R T1) →
38                    ∀T1. ⦃G, L⦄ ⊢ T1 ➡* T2 → R T1.
39 #G #L #T2 #R #HT2 #IHT2 #T1 #HT12
40 @(TC_star_ind_dx … HT2 IHT2 … HT12) //
41 qed-.
42
43 (* Basic properties *********************************************************)
44
45 (* Basic_1: was: pr3_pr2 *)
46 lemma cpr_cprs: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡ T2 → ⦃G, L⦄ ⊢ T1 ➡* T2.
47 /2 width=1 by inj/ qed.
48
49 (* Basic_1: was: pr3_refl *)
50 lemma cprs_refl: ∀G,L,T. ⦃G, L⦄ ⊢ T ➡* T.
51 /2 width=1 by cpr_cprs/ qed.
52
53 lemma cprs_strap1: ∀G,L,T1,T,T2.
54                    ⦃G, L⦄ ⊢ T1 ➡* T → ⦃G, L⦄ ⊢ T ➡ T2 → ⦃G, L⦄ ⊢ T1 ➡* T2.
55 normalize /2 width=3 by step/ qed.
56
57 (* Basic_1: was: pr3_step *)
58 lemma cprs_strap2: ∀G,L,T1,T,T2.
59                    ⦃G, L⦄ ⊢ T1 ➡ T → ⦃G, L⦄ ⊢ T ➡* T2 → ⦃G, L⦄ ⊢ T1 ➡* T2.
60 normalize /2 width=3 by TC_strap/ qed.
61
62 lemma lsubr_cprs_trans: ∀G. lsub_trans … (cprs G) lsubr.
63 /3 width=5 by lsubr_cpr_trans, LTC_lsub_trans/
64 qed-.
65
66 (* Basic_1: was: pr3_pr1 *)
67 lemma tprs_cprs: ∀G,L,T1,T2. ⦃G, ⋆⦄ ⊢ T1 ➡* T2 → ⦃G, L⦄ ⊢ T1 ➡* T2.
68 /2 width=3 by lsubr_cprs_trans/ qed.
69
70 lemma cprs_bind_dx: ∀G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ➡ V2 → ∀I,T1,T2. ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ➡* T2 →
71                     ∀a. ⦃G, L⦄ ⊢ ⓑ{a,I}V1. T1 ➡* ⓑ{a,I}V2. T2.
72 #G #L #V1 #V2 #HV12 #I #T1 #T2 #HT12 #a @(cprs_ind_dx … HT12) -T1
73 /3 width=3 by cprs_strap2, cpr_cprs, cpr_pair_sn, cpr_bind/ qed.
74
75 (* Basic_1: was only: pr3_thin_dx *)
76 lemma cprs_flat_dx: ∀I,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ➡ V2 → ∀T1,T2. ⦃G, L⦄ ⊢ T1 ➡* T2 →
77                     ⦃G, L⦄ ⊢ ⓕ{I} V1. T1 ➡* ⓕ{I} V2. T2.
78 #I #G #L #V1 #V2 #HV12 #T1 #T2 #HT12 @(cprs_ind … HT12) -T2
79 /3 width=5 by cprs_strap1, cpr_flat, cpr_cprs, cpr_pair_sn/
80 qed.
81
82 lemma cprs_flat_sn: ∀I,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡ T2 → ∀V1,V2. ⦃G, L⦄ ⊢ V1 ➡* V2 →
83                     ⦃G, L⦄ ⊢ ⓕ{I} V1. T1 ➡* ⓕ{I} V2. T2.
84 #I #G #L #T1 #T2 #HT12 #V1 #V2 #H @(cprs_ind … H) -V2
85 /3 width=3 by cprs_strap1, cpr_cprs, cpr_pair_sn, cpr_flat/
86 qed.
87
88 lemma cprs_zeta: ∀G,L,V,T1,T,T2. ⇧[0, 1] T2 ≡ T →
89                  ⦃G, L.ⓓV⦄ ⊢ T1 ➡* T → ⦃G, L⦄ ⊢ +ⓓV.T1 ➡* T2.
90 #G #L #V #T1 #T #T2 #HT2 #H @(cprs_ind_dx … H) -T1
91 /3 width=3 by cprs_strap2, cpr_cprs, cpr_bind, cpr_zeta/
92 qed.
93
94 lemma cprs_eps: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡* T2 → ∀V. ⦃G, L⦄ ⊢ ⓝV.T1 ➡* T2.
95 #G #L #T1 #T2 #H @(cprs_ind … H) -T2
96 /3 width=3 by cprs_strap1, cpr_cprs, cpr_eps/
97 qed.
98
99 lemma cprs_beta_dx: ∀a,G,L,V1,V2,W1,W2,T1,T2.
100                     ⦃G, L⦄ ⊢ V1 ➡ V2 → ⦃G, L⦄ ⊢ W1 ➡ W2 → ⦃G, L.ⓛW1⦄ ⊢ T1 ➡* T2 →
101                     ⦃G, L⦄ ⊢ ⓐV1.ⓛ{a}W1.T1 ➡* ⓓ{a}ⓝW2.V2.T2.
102 #a #G #L #V1 #V2 #W1 #W2 #T1 #T2 #HV12 #HW12 * -T2
103 /4 width=7 by cprs_strap1, cpr_cprs, cprs_bind_dx, cprs_flat_dx, cpr_beta/
104 qed.
105
106 lemma cprs_theta_dx: ∀a,G,L,V1,V,V2,W1,W2,T1,T2.
107                      ⦃G, L⦄ ⊢ V1 ➡ V → ⇧[0, 1] V ≡ V2 → ⦃G, L.ⓓW1⦄ ⊢ T1 ➡* T2 →
108                      ⦃G, L⦄ ⊢ W1 ➡ W2 → ⦃G, L⦄ ⊢ ⓐV1.ⓓ{a}W1.T1 ➡* ⓓ{a}W2.ⓐV2.T2.
109 #a #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 #HV1 #HV2 * -T2
110 /4 width=9 by cprs_strap1, cpr_cprs, cprs_bind_dx, cprs_flat_dx, cpr_theta/
111 qed.
112
113 (* Basic inversion lemmas ***************************************************)
114
115 (* Basic_1: was: pr3_gen_sort *)
116 lemma cprs_inv_sort1: ∀G,L,U2,k. ⦃G, L⦄ ⊢ ⋆k ➡* U2 → U2 = ⋆k.
117 #G #L #U2 #k #H @(cprs_ind … H) -U2 //
118 #U2 #U #_ #HU2 #IHU2 destruct
119 >(cpr_inv_sort1 … HU2) -HU2 //
120 qed-.
121
122 (* Basic_1: was: pr3_gen_cast *)
123 lemma cprs_inv_cast1: ∀G,L,W1,T1,U2. ⦃G, L⦄ ⊢ ⓝW1.T1 ➡* U2 → ⦃G, L⦄ ⊢ T1 ➡* U2 ∨
124                       ∃∃W2,T2. ⦃G, L⦄ ⊢ W1 ➡* W2 & ⦃G, L⦄ ⊢ T1 ➡* T2 & U2 = ⓝW2.T2.
125 #G #L #W1 #T1 #U2 #H @(cprs_ind … H) -U2 /3 width=5/
126 #U2 #U #_ #HU2 * /3 width=3 by cprs_strap1, or_introl/ *
127 #W #T #HW1 #HT1 #H destruct
128 elim (cpr_inv_cast1 … HU2) -HU2 /3 width=3 by cprs_strap1, or_introl/ *
129 #W2 #T2 #HW2 #HT2 #H destruct /4 width=5 by cprs_strap1, ex3_2_intro, or_intror/
130 qed-.
131
132 (* Basic_1: was: nf2_pr3_unfold *)
133 lemma cprs_inv_cnr1: ∀G,L,T,U. ⦃G, L⦄ ⊢ T ➡* U → ⦃G, L⦄ ⊢ ➡ 𝐍⦃T⦄ → T = U.
134 #G #L #T #U #H @(cprs_ind_dx … H) -T //
135 #T0 #T #H1T0 #_ #IHT #H2T0
136 lapply (H2T0 … H1T0) -H1T0 #H destruct /2 width=1 by/
137 qed-.
138
139 (* Basic_1: removed theorems 13:
140    pr1_head_1 pr1_head_2 pr1_comp
141    clear_pr3_trans pr3_cflat pr3_gen_bind
142    pr3_head_1 pr3_head_2 pr3_head_21 pr3_head_12
143    pr3_iso_appl_bind pr3_iso_appls_appl_bind pr3_iso_appls_bind
144 *)