]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/computation/cprs_cprs.ma
some renaming and some typos corrected ...
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / computation / cprs_cprs.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/reduction/lpr_lpr.ma".
16 include "basic_2/computation/cprs_lift.ma".
17
18 (* CONTEXT-SENSITIVE PARALLEL COMPUTATION ON TERMS **************************)
19
20 (* Main properties **********************************************************)
21
22 (* Basic_1: was: pr3_t *)
23 (* Basic_1: includes: pr1_t *)
24 theorem cprs_trans: ∀G,L. Transitive … (cprs G L).
25 normalize /2 width=3 by trans_TC/ qed-.
26
27 (* Basic_1: was: pr3_confluence *)
28 (* Basic_1: includes: pr1_confluence *)
29 theorem cprs_conf: ∀G,L. confluent2 … (cprs G L) (cprs G L).
30 normalize /3 width=3 by cpr_conf, TC_confluent2/ qed-.
31
32 theorem cprs_bind: ∀a,I,G,L,V1,V2,T1,T2. ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ➡* T2 → ⦃G, L⦄ ⊢ V1 ➡* V2 →
33                    ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ➡* ⓑ{a,I}V2.T2.
34 #a #I #G #L #V1 #V2 #T1 #T2 #HT12 #H @(cprs_ind … H) -V2
35 /3 width=5 by cprs_trans, cprs_bind_dx/
36 qed.
37
38 (* Basic_1: was: pr3_flat *)
39 theorem cprs_flat: ∀I,G,L,V1,V2,T1,T2. ⦃G, L⦄ ⊢ T1 ➡* T2 → ⦃G, L⦄ ⊢ V1 ➡* V2 →
40                    ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ➡* ⓕ{I}V2.T2.
41 #I #G #L #V1 #V2 #T1 #T2 #HT12 #H @(cprs_ind … H) -V2
42 /3 width=3 by cprs_flat_dx, cprs_strap1, cpr_pair_sn/
43 qed.
44
45 theorem cprs_beta_rc: ∀a,G,L,V1,V2,W1,W2,T1,T2.
46                       ⦃G, L⦄ ⊢ V1 ➡ V2 → ⦃G, L.ⓛW1⦄ ⊢ T1 ➡* T2 → ⦃G, L⦄ ⊢ W1 ➡* W2 →
47                       ⦃G, L⦄ ⊢ ⓐV1.ⓛ{a}W1.T1 ➡* ⓓ{a}ⓝW2.V2.T2.
48 #a #G #L #V1 #V2 #W1 #W2 #T1 #T2 #HV12 #HT12 #H @(cprs_ind … H) -W2 /2 width=1 by cprs_beta_dx/
49 #W #W2 #_ #HW2 #IHW1 (**) (* fulla uto too slow 14s *)
50 @(cprs_trans … IHW1) -IHW1 /3 width=1 by cprs_flat_dx, cprs_bind/
51 qed.
52
53 theorem cprs_beta: ∀a,G,L,V1,V2,W1,W2,T1,T2.
54                    ⦃G, L.ⓛW1⦄ ⊢ T1 ➡* T2 → ⦃G, L⦄ ⊢ W1 ➡* W2 → ⦃G, L⦄ ⊢ V1 ➡* V2 →
55                    ⦃G, L⦄ ⊢ ⓐV1.ⓛ{a}W1.T1 ➡* ⓓ{a}ⓝW2.V2.T2.
56 #a #G #L #V1 #V2 #W1 #W2 #T1 #T2 #HT12 #HW12 #H @(cprs_ind … H) -V2 /2 width=1 by cprs_beta_rc/
57 #V #V2 #_ #HV2 #IHV1
58 @(cprs_trans … IHV1) -IHV1 /3 width=1 by cprs_flat_sn, cprs_bind/
59 qed.
60
61 theorem cprs_theta_rc: ∀a,G,L,V1,V,V2,W1,W2,T1,T2.
62                        ⦃G, L⦄ ⊢ V1 ➡ V → ⇧[0, 1] V ≡ V2 → ⦃G, L.ⓓW1⦄ ⊢ T1 ➡* T2 →
63                        ⦃G, L⦄ ⊢ W1 ➡* W2 → ⦃G, L⦄ ⊢ ⓐV1.ⓓ{a}W1.T1 ➡* ⓓ{a}W2.ⓐV2.T2.
64 #a #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 #HV1 #HV2 #HT12 #H @(cprs_ind … H) -W2
65 /3 width=5 by cprs_trans, cprs_theta_dx, cprs_bind_dx/
66 qed.
67
68 theorem cprs_theta: ∀a,G,L,V1,V,V2,W1,W2,T1,T2.
69                     ⇧[0, 1] V ≡ V2 → ⦃G, L⦄ ⊢ W1 ➡* W2 → ⦃G, L.ⓓW1⦄ ⊢ T1 ➡* T2 →
70                     ⦃G, L⦄ ⊢ V1 ➡* V → ⦃G, L⦄ ⊢ ⓐV1.ⓓ{a}W1.T1 ➡* ⓓ{a}W2.ⓐV2.T2.
71 #a #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 #HV2 #HW12 #HT12 #H @(cprs_ind_dx … H) -V1
72 /3 width=3 by cprs_trans, cprs_theta_rc, cprs_flat_dx/
73 qed.
74
75 (* Advanced inversion lemmas ************************************************)
76
77 (* Basic_1: was pr3_gen_appl *)
78 lemma cprs_inv_appl1: ∀G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓐV1.T1 ➡* U2 →
79                       ∨∨ ∃∃V2,T2.       ⦃G, L⦄ ⊢ V1 ➡* V2 & ⦃G, L⦄ ⊢ T1 ➡* T2 &
80                                         U2 = ⓐV2. T2
81                        | ∃∃a,W,T.       ⦃G, L⦄ ⊢ T1 ➡* ⓛ{a}W.T &
82                                         ⦃G, L⦄ ⊢ ⓓ{a}ⓝW.V1.T ➡* U2
83                        | ∃∃a,V0,V2,V,T. ⦃G, L⦄ ⊢ V1 ➡* V0 & ⇧[0,1] V0 ≡ V2 &
84                                         ⦃G, L⦄ ⊢ T1 ➡* ⓓ{a}V.T &
85                                         ⦃G, L⦄ ⊢ ⓓ{a}V.ⓐV2.T ➡* U2.
86 #G #L #V1 #T1 #U2 #H @(cprs_ind … H) -U2 /3 width=5 by or3_intro0, ex3_2_intro/
87 #U #U2 #_ #HU2 * *
88 [ #V0 #T0 #HV10 #HT10 #H destruct
89   elim (cpr_inv_appl1 … HU2) -HU2 *
90   [ #V2 #T2 #HV02 #HT02 #H destruct /4 width=5 by cprs_strap1, or3_intro0, ex3_2_intro/
91   | #a #V2 #W #W2 #T #T2 #HV02 #HW2 #HT2 #H1 #H2 destruct
92     lapply (cprs_strap1 … HV10 … HV02) -V0 #HV12
93     lapply (lsubr_cpr_trans … HT2 (L.ⓓⓝW.V1) ?) -HT2
94     /5 width=5 by cprs_bind, cprs_flat_dx, cpr_cprs, lsubr_beta, ex2_3_intro, or3_intro1/
95   | #a #V #V2 #W0 #W2 #T #T2 #HV0 #HV2 #HW02 #HT2 #H1 #H2 destruct
96     /5 width=10 by cprs_flat_sn, cprs_bind_dx, cprs_strap1, ex4_5_intro, or3_intro2/
97   ]
98 | /4 width=9 by cprs_strap1, or3_intro1, ex2_3_intro/
99 | /4 width=11 by cprs_strap1, or3_intro2, ex4_5_intro/
100 ]
101 qed-.
102
103 (* Properties concerning sn parallel reduction on local environments ********)
104
105 (* Basic_1: was just: pr3_pr2_pr2_t *)
106 (* Basic_1: includes: pr3_pr0_pr2_t *)
107 lemma lpr_cpr_trans: ∀G. s_r_transitive … (cpr G) (λ_. lpr G).
108 #G #L2 #T1 #T2 #HT12 elim HT12 -G -L2 -T1 -T2
109 [ /2 width=3 by/
110 | #G #L2 #K2 #V0 #V2 #W2 #i #HLK2 #_ #HVW2 #IHV02 #L1 #HL12
111   elim (lpr_drop_trans_O1 … HL12 … HLK2) -L2 #X #HLK1 #H
112   elim (lpr_inv_pair2 … H) -H #K1 #V1 #HK12 #HV10 #H destruct
113   /4 width=6 by cprs_strap2, cprs_delta/
114 |3,7: /4 width=1 by lpr_pair, cprs_bind, cprs_beta/
115 |4,6: /3 width=1 by cprs_flat, cprs_eps/
116 |5,8: /4 width=3 by lpr_pair, cprs_zeta, cprs_theta, cprs_strap1/
117 ]
118 qed-.
119
120 lemma cpr_bind2: ∀G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ➡ V2 → ∀I,T1,T2. ⦃G, L.ⓑ{I}V2⦄ ⊢ T1 ➡ T2 →
121                  ∀a. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ➡* ⓑ{a,I}V2.T2.
122 /4 width=5 by lpr_cpr_trans, cprs_bind_dx, lpr_pair/ qed.
123
124 (* Advanced properties ******************************************************)
125
126 (* Basic_1: was only: pr3_pr2_pr3_t pr3_wcpr0_t *)
127 lemma lpr_cprs_trans: ∀G. s_rs_transitive … (cpr G) (λ_. lpr G).
128 #G @s_r_trans_LTC1 /2 width=3 by lpr_cpr_trans/ (**) (* full auto fails *)
129 qed-.
130
131 (* Basic_1: was: pr3_strip *)
132 (* Basic_1: includes: pr1_strip *)
133 lemma cprs_strip: ∀G,L. confluent2 … (cprs G L) (cpr G L).
134 normalize /4 width=3 by cpr_conf, TC_strip1/ qed-.
135
136 lemma cprs_lpr_conf_dx: ∀G,L0,T0,T1. ⦃G, L0⦄ ⊢ T0 ➡* T1 → ∀L1. ⦃G, L0⦄ ⊢ ➡ L1 →
137                         ∃∃T. ⦃G, L1⦄ ⊢ T1 ➡* T & ⦃G, L1⦄ ⊢ T0 ➡* T.
138 #G #L0 #T0 #T1 #H @(cprs_ind … H) -T1 /2 width=3 by ex2_intro/
139 #T #T1 #_ #HT1 #IHT0 #L1 #HL01 elim (IHT0 … HL01)
140 #T2 #HT2 #HT02 elim (lpr_cpr_conf_dx … HT1 … HL01) -L0
141 #T3 #HT3 #HT13 elim (cprs_strip … HT2 … HT3) -T
142 /4 width=5 by cprs_strap2, cprs_strap1, ex2_intro/
143 qed-.
144
145 lemma cprs_lpr_conf_sn: ∀G,L0,T0,T1. ⦃G, L0⦄ ⊢ T0 ➡* T1 →
146                         ∀L1. ⦃G, L0⦄ ⊢ ➡ L1 →
147                         ∃∃T. ⦃G, L0⦄ ⊢ T1 ➡* T & ⦃G, L1⦄ ⊢ T0 ➡* T.
148 #G #L0 #T0 #T1 #HT01 #L1 #HL01 elim (cprs_lpr_conf_dx … HT01 … HL01) -HT01
149 /3 width=3 by lpr_cprs_trans, ex2_intro/
150 qed-.
151
152 lemma cprs_bind2_dx: ∀G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ➡ V2 →
153                      ∀I,T1,T2. ⦃G, L.ⓑ{I}V2⦄ ⊢ T1 ➡* T2 →
154                      ∀a. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ➡* ⓑ{a,I}V2.T2.
155 /4 width=5 by lpr_cprs_trans, cprs_bind_dx, lpr_pair/ qed.