1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2/notation/relations/predstar_6.ma".
16 include "basic_2/reduction/cnx.ma".
17 include "basic_2/computation/cprs.ma".
19 (* CONTEXT-SENSITIVE EXTENDED PARALLEL COMPUTATION ON TERMS *****************)
21 definition cpxs: ∀h. sd h → relation4 genv lenv term term ≝
22 λh,g,G. LTC … (cpx h g G).
24 interpretation "extended context-sensitive parallel computation (term)"
25 'PRedStar h g G L T1 T2 = (cpxs h g G L T1 T2).
27 (* Basic eliminators ********************************************************)
29 lemma cpxs_ind: ∀h,g,G,L,T1. ∀R:predicate term. R T1 →
30 (∀T,T2. ⦃G, L⦄ ⊢ T1 ➡*[h, g] T → ⦃G, L⦄ ⊢ T ➡[h, g] T2 → R T → R T2) →
31 ∀T2. ⦃G, L⦄ ⊢ T1 ➡*[h, g] T2 → R T2.
32 #h #g #L #G #T1 #R #HT1 #IHT1 #T2 #HT12
33 @(TC_star_ind … HT1 IHT1 … HT12) //
36 lemma cpxs_ind_dx: ∀h,g,G,L,T2. ∀R:predicate term. R T2 →
37 (∀T1,T. ⦃G, L⦄ ⊢ T1 ➡[h, g] T → ⦃G, L⦄ ⊢ T ➡*[h, g] T2 → R T → R T1) →
38 ∀T1. ⦃G, L⦄ ⊢ T1 ➡*[h, g] T2 → R T1.
39 #h #g #G #L #T2 #R #HT2 #IHT2 #T1 #HT12
40 @(TC_star_ind_dx … HT2 IHT2 … HT12) //
43 (* Basic properties *********************************************************)
45 lemma cpxs_refl: ∀h,g,G,L,T. ⦃G, L⦄ ⊢ T ➡*[h, g] T.
46 /2 width=1 by inj/ qed.
48 lemma cpx_cpxs: ∀h,g,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡[h, g] T2 → ⦃G, L⦄ ⊢ T1 ➡*[h, g] T2.
49 /2 width=1 by inj/ qed.
51 lemma cpxs_strap1: ∀h,g,G,L,T1,T. ⦃G, L⦄ ⊢ T1 ➡*[h, g] T →
52 ∀T2. ⦃G, L⦄ ⊢ T ➡[h, g] T2 → ⦃G, L⦄ ⊢ T1 ➡*[h, g] T2.
53 normalize /2 width=3 by step/ qed.
55 lemma cpxs_strap2: ∀h,g,G,L,T1,T. ⦃G, L⦄ ⊢ T1 ➡[h, g] T →
56 ∀T2. ⦃G, L⦄ ⊢ T ➡*[h, g] T2 → ⦃G, L⦄ ⊢ T1 ➡*[h, g] T2.
57 normalize /2 width=3 by TC_strap/ qed.
59 lemma lsubr_cpxs_trans: ∀h,g,G. lsub_trans … (cpxs h g G) lsubr.
60 /3 width=5 by lsubr_cpx_trans, LTC_lsub_trans/
63 lemma cprs_cpxs: ∀h,g,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡* T2 → ⦃G, L⦄ ⊢ T1 ➡*[h, g] T2.
64 #h #g #G #L #T1 #T2 #H @(cprs_ind … H) -T2 /3 width=3 by cpxs_strap1, cpr_cpx/
67 lemma cpxs_sort: ∀h,g,G,L,k,l1. deg h g k l1 →
68 ∀l2. l2 ≤ l1 → ⦃G, L⦄ ⊢ ⋆k ➡*[h, g] ⋆((next h)^l2 k).
69 #h #g #G #L #k #l1 #Hkl1 #l2 @(nat_ind_plus … l2) -l2 /2 width=1 by cpx_cpxs/
70 #l2 #IHl2 #Hl21 >iter_SO
71 @(cpxs_strap1 … (⋆(iter l2 ℕ (next h) k)))
72 [ /3 width=3 by lt_to_le/
73 | @(cpx_st … (l1-l2-1)) <plus_minus_m_m
74 /2 width=1 by deg_iter, monotonic_le_minus_r/
78 lemma cpxs_bind_dx: ∀h,g,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ➡[h, g] V2 →
79 ∀I,T1,T2. ⦃G, L. ⓑ{I}V1⦄ ⊢ T1 ➡*[h, g] T2 →
80 ∀a. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ➡*[h, g] ⓑ{a,I}V2.T2.
81 #h #g #G #L #V1 #V2 #HV12 #I #T1 #T2 #HT12 #a @(cpxs_ind_dx … HT12) -T1
82 /3 width=3 by cpxs_strap2, cpx_cpxs, cpx_pair_sn, cpx_bind/
85 lemma cpxs_flat_dx: ∀h,g,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ➡[h, g] V2 →
86 ∀T1,T2. ⦃G, L⦄ ⊢ T1 ➡*[h, g] T2 →
87 ∀I. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ➡*[h, g] ⓕ{I}V2.T2.
88 #h #g #G #L #V1 #V2 #HV12 #T1 #T2 #HT12 @(cpxs_ind … HT12) -T2
89 /3 width=5 by cpxs_strap1, cpx_cpxs, cpx_pair_sn, cpx_flat/
92 lemma cpxs_flat_sn: ∀h,g,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡[h, g] T2 →
93 ∀V1,V2. ⦃G, L⦄ ⊢ V1 ➡*[h, g] V2 →
94 ∀I. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ➡*[h, g] ⓕ{I}V2.T2.
95 #h #g #G #L #T1 #T2 #HT12 #V1 #V2 #H @(cpxs_ind … H) -V2
96 /3 width=5 by cpxs_strap1, cpx_cpxs, cpx_pair_sn, cpx_flat/
99 lemma cpxs_pair_sn: ∀h,g,I,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ➡*[h, g] V2 →
100 ∀T. ⦃G, L⦄ ⊢ ②{I}V1.T ➡*[h, g] ②{I}V2.T.
101 #h #g #I #G #L #V1 #V2 #H @(cpxs_ind … H) -V2
102 /3 width=3 by cpxs_strap1, cpx_pair_sn/
105 lemma cpxs_zeta: ∀h,g,G,L,V,T1,T,T2. ⬆[0, 1] T2 ≡ T →
106 ⦃G, L.ⓓV⦄ ⊢ T1 ➡*[h, g] T → ⦃G, L⦄ ⊢ +ⓓV.T1 ➡*[h, g] T2.
107 #h #g #G #L #V #T1 #T #T2 #HT2 #H @(cpxs_ind_dx … H) -T1
108 /3 width=3 by cpxs_strap2, cpx_cpxs, cpx_bind, cpx_zeta/
111 lemma cpxs_eps: ∀h,g,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡*[h, g] T2 →
112 ∀V. ⦃G, L⦄ ⊢ ⓝV.T1 ➡*[h, g] T2.
113 #h #g #G #L #T1 #T2 #H @(cpxs_ind … H) -T2
114 /3 width=3 by cpxs_strap1, cpx_cpxs, cpx_eps/
117 lemma cpxs_ct: ∀h,g,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ➡*[h, g] V2 →
118 ∀T. ⦃G, L⦄ ⊢ ⓝV1.T ➡*[h, g] V2.
119 #h #g #G #L #V1 #V2 #H @(cpxs_ind … H) -V2
120 /3 width=3 by cpxs_strap1, cpx_cpxs, cpx_ct/
123 lemma cpxs_beta_dx: ∀h,g,a,G,L,V1,V2,W1,W2,T1,T2.
124 ⦃G, L⦄ ⊢ V1 ➡[h, g] V2 → ⦃G, L.ⓛW1⦄ ⊢ T1 ➡*[h, g] T2 → ⦃G, L⦄ ⊢ W1 ➡[h, g] W2 →
125 ⦃G, L⦄ ⊢ ⓐV1.ⓛ{a}W1.T1 ➡*[h, g] ⓓ{a}ⓝW2.V2.T2.
126 #h #g #a #G #L #V1 #V2 #W1 #W2 #T1 #T2 #HV12 * -T2
127 /4 width=7 by cpx_cpxs, cpxs_strap1, cpxs_bind_dx, cpxs_flat_dx, cpx_beta/
130 lemma cpxs_theta_dx: ∀h,g,a,G,L,V1,V,V2,W1,W2,T1,T2.
131 ⦃G, L⦄ ⊢ V1 ➡[h, g] V → ⬆[0, 1] V ≡ V2 → ⦃G, L.ⓓW1⦄ ⊢ T1 ➡*[h, g] T2 →
132 ⦃G, L⦄ ⊢ W1 ➡[h, g] W2 → ⦃G, L⦄ ⊢ ⓐV1.ⓓ{a}W1.T1 ➡*[h, g] ⓓ{a}W2.ⓐV2.T2.
133 #h #g #a #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 #HV1 #HV2 * -T2
134 /4 width=9 by cpx_cpxs, cpxs_strap1, cpxs_bind_dx, cpxs_flat_dx, cpx_theta/
137 (* Basic inversion lemmas ***************************************************)
139 lemma cpxs_inv_sort1: ∀h,g,G,L,U2,k. ⦃G, L⦄ ⊢ ⋆k ➡*[h, g] U2 →
140 ∃∃n,l. deg h g k (n+l) & U2 = ⋆((next h)^n k).
141 #h #g #G #L #U2 #k #H @(cpxs_ind … H) -U2
142 [ elim (deg_total h g k) #l #Hkl
143 @(ex2_2_intro … 0 … Hkl) -Hkl //
144 | #U #U2 #_ #HU2 * #n #l #Hknl #H destruct
145 elim (cpx_inv_sort1 … HU2) -HU2
146 [ #H destruct /2 width=4 by ex2_2_intro/
147 | * #l0 #Hkl0 #H destruct -l
148 @(ex2_2_intro … (n+1) l0) /2 width=1 by deg_inv_prec/ >iter_SO //
153 lemma cpxs_inv_cast1: ∀h,g,G,L,W1,T1,U2. ⦃G, L⦄ ⊢ ⓝW1.T1 ➡*[h, g] U2 →
154 ∨∨ ∃∃W2,T2. ⦃G, L⦄ ⊢ W1 ➡*[h, g] W2 & ⦃G, L⦄ ⊢ T1 ➡*[h, g] T2 & U2 = ⓝW2.T2
155 | ⦃G, L⦄ ⊢ T1 ➡*[h, g] U2
156 | ⦃G, L⦄ ⊢ W1 ➡*[h, g] U2.
157 #h #g #G #L #W1 #T1 #U2 #H @(cpxs_ind … H) -U2 /3 width=5 by or3_intro0, ex3_2_intro/
158 #U2 #U #_ #HU2 * /3 width=3 by cpxs_strap1, or3_intro1, or3_intro2/ *
159 #W #T #HW1 #HT1 #H destruct
160 elim (cpx_inv_cast1 … HU2) -HU2 /3 width=3 by cpxs_strap1, or3_intro1, or3_intro2/ *
161 #W2 #T2 #HW2 #HT2 #H destruct
162 lapply (cpxs_strap1 … HW1 … HW2) -W
163 lapply (cpxs_strap1 … HT1 … HT2) -T /3 width=5 by or3_intro0, ex3_2_intro/
166 lemma cpxs_inv_cnx1: ∀h,g,G,L,T,U. ⦃G, L⦄ ⊢ T ➡*[h, g] U → ⦃G, L⦄ ⊢ ➡[h, g] 𝐍⦃T⦄ → T = U.
167 #h #g #G #L #T #U #H @(cpxs_ind_dx … H) -T //
168 #T0 #T #H1T0 #_ #IHT #H2T0
169 lapply (H2T0 … H1T0) -H1T0 #H destruct /2 width=1 by/
172 lemma cpxs_neq_inv_step_sn: ∀h,g,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡*[h, g] T2 → (T1 = T2 → ⊥) →
173 ∃∃T. ⦃G, L⦄ ⊢ T1 ➡[h, g] T & T1 = T → ⊥ & ⦃G, L⦄ ⊢ T ➡*[h, g] T2.
174 #h #g #G #L #T1 #T2 #H @(cpxs_ind_dx … H) -T1
176 | #T1 #T #H1 #H2 #IH2 #H12 elim (eq_term_dec T1 T) #H destruct
177 [ -H1 -H2 /3 width=1 by/
178 | -IH2 /3 width=4 by ex3_intro/ (**) (* auto fails without clear *)