1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2/notation/relations/btpredstarrestricted_8.ma".
16 include "basic_2/computation/fpbs.ma".
18 (* RESTRICTED "BIG TREE" PROPER PARALLEL COMPUTATION FOR CLOSURES ***********)
20 inductive fpbr (h) (g) (G1) (L1) (T1): relation3 genv lenv term ≝
21 | fpbr_inj : ∀G2,L2,T2. ⦃G1, L1, T1⦄ ⊃ ⦃G2, L2, T2⦄ → fpbr h g G1 L1 T1 G2 L2 T2
22 | fpbr_step: ∀G,G2,L,L2,T,T2. fpbr h g G1 L1 T1 G L T → ⦃G, L, T⦄ ≽[h, g] ⦃G2, L2, T2⦄ →
23 fpbr h g G1 L1 T1 G2 L2 T2
26 interpretation "restricted 'big tree' proper parallel computation (closure)"
27 'BTPRedStarRestricted h g G1 L1 T1 G2 L2 T2 = (fpbr h g G1 L1 T1 G2 L2 T2).
29 (* Basic inversion lemmas ***************************************************)
31 lemma fpbr_inv_fqu_fpbs: ∀h,g,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊃≥[h, g] ⦃G2, L2, T2⦄ →
32 ∃∃G,L,T. ⦃G1, L1, T1⦄ ⊃ ⦃G, L, T⦄ & ⦃G, L, T⦄ ≥[h, g] ⦃G2, L2, T2⦄.
33 #h #g #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G2 -L2 -T2 [ /2 width=5 by ex2_3_intro/ ] (**) (* auto fails without brackets *)
34 #G #G2 #L #L2 #T #T2 #_ #HT2 * /3 width=9 by fpbs_strap1, ex2_3_intro/
37 (* Basic forward lemmas *****************************************************)
39 lemma fpbr_fwd_fpbs: ∀h,g,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊃≥[h, g] ⦃G2, L2, T2⦄ →
40 ⦃G1, L1, T1⦄ ≥[h, g] ⦃G2, L2, T2⦄.
41 #h #g #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G2 -L2 -T2
42 /3 width=5 by fpbs_strap1, fqup_fpbs, fqu_fqup/
45 (* Basic properties *********************************************************)
47 lemma fqu_fpbs_fpbr: ∀h,g,G1,G,G2,L1,L,L2,T1,T,T2. ⦃G1, L1, T1⦄ ⊃ ⦃G, L, T⦄ →
48 ⦃G, L, T⦄ ≥[h, g] ⦃G2, L2, T2⦄ → ⦃G1, L1, T1⦄ ⊃≥[h, g] ⦃G2, L2, T2⦄.
49 #h #g #G1 #G #G2 #L1 #L #L2 #T1 #T #T2 #H1 #H @(fpbs_ind … H) -G2 -L2 -T2
50 /2 width=5 by fpbr_inj, fpbr_step/
53 lemma fpbr_strap2: ∀h,g,G1,G,G2,L1,L,L2,T1,T,T2. ⦃G1, L1, T1⦄ ⊃ ⦃G, L, T⦄ →
54 ⦃G, L, T⦄ ⊃≥[h, g] ⦃G2, L2, T2⦄ → ⦃G1, L1, T1⦄ ⊃≥[h, g] ⦃G2, L2, T2⦄.
55 /3 width=5 by fqu_fpbs_fpbr, fpbr_fwd_fpbs/ qed-.
57 (* Note: this is used in the closure proof *)
58 lemma fpbr_fpbs_trans: ∀h,g,G1,G,G2,L1,L,L2,T1,T,T2. ⦃G1, L1, T1⦄ ⊃≥[h, g] ⦃G, L, T⦄ →
59 ⦃G, L, T⦄ ≥[h, g] ⦃G2, L2, T2⦄ → ⦃G1, L1, T1⦄ ⊃≥[h, g] ⦃G2, L2, T2⦄.
60 #h #g #G1 #G #G2 #L1 #L #L2 #T1 #T #T2 #HT1 #HT2 @(fpbs_ind … HT2) -G2 -L2 -T2
61 /2 width=5 by fpbr_step/
64 lemma fqup_fpbr_trans: ∀h,g,G1,G,G2,L1,L,L2,T1,T,T2. ⦃G1, L1, T1⦄ ⊃+ ⦃G, L, T⦄ →
65 ⦃G, L, T⦄ ⊃≥[h, g] ⦃G2, L2, T2⦄ → ⦃G1, L1, T1⦄ ⊃≥[h, g] ⦃G2, L2, T2⦄.
66 #h #g #G1 #G #G2 #L1 #L #L2 #T1 #T #T2 #HT1 @(fqup_ind … HT1) -G -L -T
67 /3 width=5 by fpbr_strap2/
70 (* Note: this is used in the closure proof *)
71 lemma fqup_fpbr: ∀h,g,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊃+ ⦃G2, L2, T2⦄ → ⦃G1, L1, T1⦄ ⊃≥[h, g] ⦃G2, L2, T2⦄.
72 #h #g #G1 #G2 #L1 #L2 #T1 #T2 #H elim (fqup_inv_step_sn … H) -H
73 /3 width=5 by fqu_fpbs_fpbr, fqus_fpbs/