1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2/conversion/cpc.ma".
17 (* CONTEXT-SENSITIVE PARALLEL EQUIVALENCE ON TERMS **************************)
19 definition cpcs: lenv → relation term ≝ LTC … cpc.
21 interpretation "context-sensitive parallel equivalence (term)"
22 'PConvStar L T1 T2 = (cpcs L T1 T2).
24 (* Basic eliminators ********************************************************)
26 lemma cpcs_ind: ∀L,T1. ∀R:predicate term. R T1 →
27 (∀T,T2. L ⊢ T1 ⬌* T → L ⊢ T ⬌ T2 → R T → R T2) →
28 ∀T2. L ⊢ T1 ⬌* T2 → R T2.
29 #L #T1 #R #HT1 #IHT1 #T2 #HT12 @(TC_star_ind … HT1 IHT1 … HT12) //
32 lemma cpcs_ind_dx: ∀L,T2. ∀R:predicate term. R T2 →
33 (∀T1,T. L ⊢ T1 ⬌ T → L ⊢ T ⬌* T2 → R T → R T1) →
34 ∀T1. L ⊢ T1 ⬌* T2 → R T1.
35 #L #T2 #R #HT2 #IHT2 #T1 #HT12
36 @(TC_star_ind_dx … HT2 IHT2 … HT12) //
39 (* Basic properties *********************************************************)
41 (* Basic_1: was: pc3_refl *)
42 lemma cpcs_refl: ∀L. reflexive … (cpcs L).
45 (* Basic_1: was: pc3_s *)
46 lemma cpcs_sym: ∀L. symmetric … (cpcs L).
47 #L @TC_symmetric // qed.
49 lemma cpc_cpcs: ∀L,T1,T2. L ⊢ T1 ⬌ T2 → L ⊢ T2 ⬌* T2.
52 lemma cpcs_strap1: ∀L,T1,T,T2. L ⊢ T1 ⬌* T → L ⊢ T ⬌ T2 → L ⊢ T1 ⬌* T2.
55 lemma cpcs_strap2: ∀L,T1,T,T2. L ⊢ T1 ⬌ T → L ⊢ T ⬌* T2 → L ⊢ T1 ⬌* T2.
58 (* Basic_1: was: pc3_pr2_r *)
59 lemma cpr_cpcs_dx: ∀L,T1,T2. L ⊢ T1 ➡ T2 → L ⊢ T1 ⬌* T2.
62 (* Basic_1: was: pc3_pr2_x *)
63 lemma cpr_cpcs_sn: ∀L,T1,T2. L ⊢ T2 ➡ T1 → L ⊢ T1 ⬌* T2.
66 lemma cpcs_cpr_strap1: ∀L,T1,T. L ⊢ T1 ⬌* T → ∀T2. L ⊢ T ➡ T2 → L ⊢ T1 ⬌* T2.
69 (* Basic_1: was: pc3_pr2_u *)
70 lemma cpcs_cpr_strap2: ∀L,T1,T. L ⊢ T1 ➡ T → ∀T2. L ⊢ T ⬌* T2 → L ⊢ T1 ⬌* T2.
73 lemma cpcs_cpr_div: ∀L,T1,T. L ⊢ T1 ⬌* T → ∀T2. L ⊢ T2 ➡ T → L ⊢ T1 ⬌* T2.
76 lemma cpr_div: ∀L,T1,T. L ⊢ T1 ➡ T → ∀T2. L ⊢ T2 ➡ T → L ⊢ T1 ⬌* T2.
79 (* Basic_1: was: pc3_pr2_u2 *)
80 lemma cpcs_cpr_conf: ∀L,T1,T. L ⊢ T ➡ T1 → ∀T2. L ⊢ T ⬌* T2 → L ⊢ T1 ⬌* T2.
83 lemma cpcs_cpss_strap1: ∀L,T1,T. L ⊢ T1 ⬌* T → ∀T2. L ⊢ T ▶* T2 → L ⊢ T1 ⬌* T2.
84 #L #T1 #T #HT1 #T2 #HT2
85 @(cpcs_cpr_strap1 … HT1) -T1 /2 width=3/
88 lemma cpcs_cpss_conf: ∀L,T,T1. L ⊢ T ▶* T1 → ∀T2. L ⊢ T ⬌* T2 → L ⊢ T1 ⬌* T2.
89 #L #T #T1 #HT1 #T2 #HT2
90 @(cpcs_cpr_conf … HT2) -T2 /2 width=3/
93 (* Basic_1: removed theorems 9:
94 clear_pc3_trans pc3_ind_left
95 pc3_head_1 pc3_head_2 pc3_head_12 pc3_head_21
96 pc3_pr2_fsubst0 pc3_pr2_fsubst0_back pc3_fsubst0
98 (* Basic_1: removed local theorems 6:
99 pc3_left_pr3 pc3_left_trans pc3_left_sym pc3_left_pc3 pc3_pc3_left