]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/etc/cpr/cpr_tpss.etc
- basic_2: induction for preservation results now uses supclosure
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / etc / cpr / cpr_tpss.etc
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/reducibility/ltpr_tpss.ma".
16 include "basic_2/reducibility/cpr.ma".
17
18 (* CONTEXT-SENSITIVE PARALLEL REDUCTION ON TERMS ****************************)
19
20 (* Properties on partial unfold for terms ***********************************)
21
22 lemma cpr_tpss_trans: ∀L,T1,T. L ⊢ T1 ➡ T →
23                       ∀T2,d,e. L ⊢ T ▶* [d, e] T2 → L ⊢ T1 ➡ T2.
24 #L #T1 #T * #T0 #HT10 #HT0 #T2 #d #e #HT2
25 lapply (tpss_weak_full … HT2) -HT2 #HT2
26 lapply (tpss_trans_eq … HT0 HT2) -T /2 width=3/
27 qed.
28
29 lemma cpr_tps_trans: ∀L,T1,T. L ⊢ T1 ➡ T →
30                      ∀T2,d,e. L ⊢ T ▶ [d, e] T2 → L ⊢ T1 ➡ T2.
31 /3 width=5/ qed.
32
33 lemma cpr_tpss_conf: ∀L,T0,T1. L ⊢ T0 ➡ T1 →
34                      ∀T2,d,e. L ⊢ T0 ▶* [d, e] T2 →
35                      ∃∃T. L ⊢ T1 ▶* [d, e] T & L ⊢ T2 ➡ T.
36 #L #T0 #T1 * #U0 #HTU0 #HU0T1 #T2 #d #e #HT02
37 elim (tpr_tpss_conf … HTU0 … HT02) -T0 #T0 #HT20 #HUT0
38 elim (tpss_conf_eq … HU0T1 … HUT0) -U0 /3 width=5/
39 qed-.