1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2/relocation/ldrop_ldrop.ma".
16 include "basic_2/substitution/fqus_alt.ma".
17 include "basic_2/substitution/cpys.ma".
19 (* CONTEXT-SENSITIVE EXTENDED MULTIPLE SUBSTITUTION FOR TERMS ***************)
21 (* Relocation properties ****************************************************)
23 lemma cpys_lift: ∀G. l_liftable (cpys G).
24 #G #K #T1 #T2 #H elim H -G -K -T1 -T2
25 [ #I #G #K #L #d #e #_ #U1 #H1 #U2 #H2
26 >(lift_mono … H1 … H2) -H1 -H2 //
27 | #I #G #K #KV #V #V2 #W2 #i #HKV #HV2 #HVW2 #IHV2 #L #d #e #HLK #U1 #H #U2 #HWU2
28 elim (lift_inv_lref1 … H) * #Hid #H destruct
29 [ elim (lift_trans_ge … HVW2 … HWU2) -W2 // <minus_plus #W2 #HVW2 #HWU2
30 elim (ldrop_trans_le … HLK … HKV) -K /2 width=2 by lt_to_le/ #X #HLK #H
31 elim (ldrop_inv_skip2 … H) -H /2 width=1 by lt_plus_to_minus_r/ -Hid #K #Y #HKV #HVY #H destruct /3 width=9 by cpys_delta/
32 | lapply (lift_trans_be … HVW2 … HWU2 ? ?) -W2 /2 width=1 by le_S/ >plus_plus_comm_23 #HVU2
33 lapply (ldrop_trans_ge_comm … HLK … HKV ?) -K /3 width=7 by cpys_delta/
35 | #a #I #G #K #V1 #V2 #T1 #T2 #_ #_ #IHV12 #IHT12 #L #d #e #HLK #U1 #H1 #U2 #H2
36 elim (lift_inv_bind1 … H1) -H1 #VV1 #TT1 #HVV1 #HTT1 #H1 destruct
37 elim (lift_inv_bind1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct /4 width=5 by cpys_bind, ldrop_skip/
38 | #I #G #K #V1 #V2 #T1 #T2 #_ #_ #IHV12 #IHT12 #L #d #e #HLK #U1 #H1 #U2 #H2
39 elim (lift_inv_flat1 … H1) -H1 #VV1 #TT1 #HVV1 #HTT1 #H1 destruct
40 elim (lift_inv_flat1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct /3 width=6 by cpys_flat/
44 lemma cpys_inv_lift1: ∀G. l_deliftable_sn (cpys G).
45 #G #L #U1 #U2 #H elim H -G -L -U1 -U2
46 [ * #G #L #i #K #d #e #_ #T1 #H
47 [ lapply (lift_inv_sort2 … H) -H #H destruct /2 width=3 by cpys_atom, lift_sort, ex2_intro/
48 | elim (lift_inv_lref2 … H) -H * #Hid #H destruct /3 width=3 by cpys_atom, lift_lref_ge_minus, lift_lref_lt, ex2_intro/
49 | lapply (lift_inv_gref2 … H) -H #H destruct /2 width=3 by cpys_atom, lift_gref, ex2_intro/
51 | #I #G #L #LV #V #V2 #W2 #i #HLV #HV2 #HVW2 #IHV2 #K #d #e #HLK #T1 #H
52 elim (lift_inv_lref2 … H) -H * #Hid #H destruct
53 [ elim (ldrop_conf_lt … HLK … HLV) -L // #L #U #HKL #HLV #HUV
54 elim (IHV2 … HLV … HUV) -V #U2 #HUV2 #HU2
55 elim (lift_trans_le … HUV2 … HVW2) -V2 // >minus_plus <plus_minus_m_m /3 width=9 by cpys_delta, ex2_intro/
56 | elim (le_inv_plus_l … Hid) #Hdie #Hei
57 lapply (ldrop_conf_ge … HLK … HLV ?) -L // #HKLV
58 elim (lift_split … HVW2 d (i - e + 1)) -HVW2 /3 width=1 by le_S, le_S_S/ -Hid -Hdie
59 #V1 #HV1 >plus_minus // <minus_minus /2 width=1 by le_S/ <minus_n_n <plus_n_O /3 width=9 by cpys_delta, ex2_intro/
61 | #a #I #G #L #V1 #V2 #U1 #U2 #_ #_ #IHV12 #IHU12 #K #d #e #HLK #X #H
62 elim (lift_inv_bind2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
63 elim (IHV12 … HLK … HWV1) -IHV12 #W2 #HW12 #HWV2
64 elim (IHU12 … HTU1) -IHU12 -HTU1 /3 width=5 by cpys_bind, ldrop_skip, lift_bind, ex2_intro/
65 | #I #G #L #V1 #V2 #U1 #U2 #_ #_ #IHV12 #IHU12 #K #d #e #HLK #X #H
66 elim (lift_inv_flat2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
67 elim (IHV12 … HLK … HWV1) -V1
68 elim (IHU12 … HLK … HTU1) -U1 -HLK /3 width=5 by cpys_flat, lift_flat, ex2_intro/
72 (* Properties on supclosure *************************************************)
74 lemma fqu_cpys_trans: ∀G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊃ ⦃G2, L2, T2⦄ →
75 ∀U2. ⦃G2, L2⦄ ⊢ T2 ▶*× U2 →
76 ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ▶*× U1 & ⦃G1, L1, U1⦄ ⊃ ⦃G2, L2, U2⦄.
77 #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
78 /3 width=3 by fqu_pair_sn, fqu_bind_dx, fqu_flat_dx, cpys_pair_sn, cpys_bind, cpys_flat, ex2_intro/
79 [ #I #G #L #V2 #U2 #HVU2
80 elim (lift_total U2 0 1)
81 /4 width=7 by fqu_drop, cpys_delta, ldrop_pair, ldrop_ldrop, ex2_intro/
82 | #G #L #K #T1 #U1 #e #HLK1 #HTU1 #T2 #HTU2
83 elim (lift_total T2 0 (e+1))
84 /3 width=11 by cpys_lift, fqu_drop, ex2_intro/
88 lemma fquq_cpys_trans: ∀G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊃⸮ ⦃G2, L2, T2⦄ →
89 ∀U2. ⦃G2, L2⦄ ⊢ T2 ▶*× U2 →
90 ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ▶*× U1 & ⦃G1, L1, U1⦄ ⊃⸮ ⦃G2, L2, U2⦄.
91 #G1 #G2 #L1 #L2 #T1 #T2 #H #U2 #HTU2 elim (fquq_inv_gen … H) -H
92 [ #HT12 elim (fqu_cpys_trans … HT12 … HTU2) /3 width=3 by fqu_fquq, ex2_intro/
93 | * #H1 #H2 #H3 destruct /2 width=3 by ex2_intro/
97 lemma fqup_cpys_trans: ∀G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊃+ ⦃G2, L2, T2⦄ →
98 ∀U2. ⦃G2, L2⦄ ⊢ T2 ▶*× U2 →
99 ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ▶*× U1 & ⦃G1, L1, U1⦄ ⊃+ ⦃G2, L2, U2⦄.
100 #G1 #G2 #L1 #L2 #T1 #T2 #H @(fqup_ind … H) -G2 -L2 -T2
101 [ #G2 #L2 #T2 #H12 #U2 #HTU2 elim (fqu_cpys_trans … H12 … HTU2) -T2
102 /3 width=3 by fqu_fqup, ex2_intro/
103 | #G #G2 #L #L2 #T #T2 #_ #HT2 #IHT1 #U2 #HTU2
104 elim (fqu_cpys_trans … HT2 … HTU2) -T2 #T2 #HT2 #HTU2
105 elim (IHT1 … HT2) -T /3 width=7 by fqup_strap1, ex2_intro/
109 lemma fqus_cpys_trans: ∀G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊃* ⦃G2, L2, T2⦄ →
110 ∀U2. ⦃G2, L2⦄ ⊢ T2 ▶*× U2 →
111 ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ▶*× U1 & ⦃G1, L1, U1⦄ ⊃* ⦃G2, L2, U2⦄.
112 #G1 #G2 #L1 #L2 #T1 #T2 #H #U2 #HTU2 elim (fqus_inv_gen … H) -H
113 [ #HT12 elim (fqup_cpys_trans … HT12 … HTU2) /3 width=3 by fqup_fqus, ex2_intro/
114 | * #H1 #H2 #H3 destruct /2 width=3 by ex2_intro/
118 lemma fqu_cpys_trans_neq: ∀G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊃ ⦃G2, L2, T2⦄ →
119 ∀U2. ⦃G2, L2⦄ ⊢ T2 ▶*× U2 → (T2 = U2 → ⊥) →
120 ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ▶*× U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊃ ⦃G2, L2, U2⦄.
121 #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
122 [ #I #G #L #V1 #V2 #HV12 #_ elim (lift_total V2 0 1)
123 #U2 #HVU2 @(ex3_intro … U2)
124 [1,3: /3 width=7 by fqu_drop, cpys_delta, ldrop_pair, ldrop_ldrop/
125 | #H destruct /2 width=7 by lift_inv_lref2_be/
127 | #I #G #L #V1 #T #V2 #HV12 #H @(ex3_intro … (②{I}V2.T))
128 [1,3: /2 width=4 by fqu_pair_sn, cpys_pair_sn/
129 | #H0 destruct /2 width=1 by/
131 | #a #I #G #L #V #T1 #T2 #HT12 #H @(ex3_intro … (ⓑ{a,I}V.T2))
132 [1,3: /2 width=4 by fqu_bind_dx, cpys_bind/
133 | #H0 destruct /2 width=1 by/
135 | #I #G #L #V #T1 #T2 #HT12 #H @(ex3_intro … (ⓕ{I}V.T2))
136 [1,3: /2 width=4 by fqu_flat_dx, cpys_flat/
137 | #H0 destruct /2 width=1 by/
139 | #G #L #K #T1 #U1 #e #HLK #HTU1 #T2 #HT12 #H elim (lift_total T2 0 (e+1))
140 #U2 #HTU2 @(ex3_intro … U2)
141 [1,3: /2 width=9 by cpys_lift, fqu_drop/
142 | #H0 destruct /3 width=5 by lift_inj/
146 lemma fquq_cpys_trans_neq: ∀G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊃⸮ ⦃G2, L2, T2⦄ →
147 ∀U2. ⦃G2, L2⦄ ⊢ T2 ▶*× U2 → (T2 = U2 → ⊥) →
148 ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ▶*× U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊃⸮ ⦃G2, L2, U2⦄.
149 #G1 #G2 #L1 #L2 #T1 #T2 #H12 #U2 #HTU2 #H elim (fquq_inv_gen … H12) -H12
150 [ #H12 elim (fqu_cpys_trans_neq … H12 … HTU2 H) -T2
151 /3 width=4 by fqu_fquq, ex3_intro/
152 | * #HG #HL #HT destruct /3 width=4 by ex3_intro/
156 lemma fqup_cpys_trans_neq: ∀G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊃+ ⦃G2, L2, T2⦄ →
157 ∀U2. ⦃G2, L2⦄ ⊢ T2 ▶*× U2 → (T2 = U2 → ⊥) →
158 ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ▶*× U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊃+ ⦃G2, L2, U2⦄.
159 #G1 #G2 #L1 #L2 #T1 #T2 #H @(fqup_ind_dx … H) -G1 -L1 -T1
160 [ #G1 #L1 #T1 #H12 #U2 #HTU2 #H elim (fqu_cpys_trans_neq … H12 … HTU2 H) -T2
161 /3 width=4 by fqu_fqup, ex3_intro/
162 | #G #G1 #L #L1 #T #T1 #H1 #_ #IH12 #U2 #HTU2 #H elim (IH12 … HTU2 H) -T2
163 #U1 #HTU1 #H #H12 elim (fqu_cpys_trans_neq … H1 … HTU1 H) -T1
164 /3 width=8 by fqup_strap2, ex3_intro/
168 lemma fqus_cpys_trans_neq: ∀G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊃* ⦃G2, L2, T2⦄ →
169 ∀U2. ⦃G2, L2⦄ ⊢ T2 ▶*× U2 → (T2 = U2 → ⊥) →
170 ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ▶*× U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊃* ⦃G2, L2, U2⦄.
171 #G1 #G2 #L1 #L2 #T1 #T2 #H12 #U2 #HTU2 #H elim (fqus_inv_gen … H12) -H12
172 [ #H12 elim (fqup_cpys_trans_neq … H12 … HTU2 H) -T2
173 /3 width=4 by fqup_fqus, ex3_intro/
174 | * #HG #HL #HT destruct /3 width=4 by ex3_intro/