]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/etc/fpn/fpn.etc
- ynat: some additions
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / etc / fpn / fpn.etc
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/btpredsn_8.ma".
16 include "basic_2/relocation/lleq.ma".
17 include "basic_2/reduction/lpx.ma".
18
19 (* REDUCTION FOR "BIG TREE" NORMAL FORMS ************************************)
20
21 inductive fpn (h) (g) (G) (L1) (T): relation3 genv lenv term ≝
22 | fpn_intro: ∀L2. ⦃G, L1⦄ ⊢ ➡[h, g] L2 → L1 ⋕[T] L2 → fpn h g G L1 T G L2 T
23 .
24
25 interpretation
26    "reduction for 'big tree' normal forms (closure)"
27    'BTPRedSn h g G1 L1 T1 G2 L2 T2 = (fpn h g G1 L1 T1 G2 L2 T2).
28
29 (* Basic_properties *********************************************************)
30
31 lemma fpn_refl: ∀h,g. tri_reflexive … (fpn h g).
32 /2 width=1 by fpn_intro/ qed.
33
34 (* Basic inversion lemmas ***************************************************) 
35
36 lemma fpn_inv_gen: ∀h,g,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊢ ⋕➡[h, g] ⦃G2, L2, T2⦄ →
37                    ∧∧ G1 = G2 & ⦃G1, L1⦄ ⊢ ➡[h, g] L2 & L1 ⋕[T1] L2 & T1 = T2.
38 #h #g #G1 #G2 #L1 #L2 #T1 #T2 * -G2 -L2 -T2 /2 width=1 by and4_intro/
39 qed-.