1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2/notation/relations/btpredsn_8.ma".
16 include "basic_2/relocation/lleq.ma".
17 include "basic_2/reduction/lpx.ma".
19 (* REDUCTION FOR "BIG TREE" NORMAL FORMS ************************************)
21 inductive fpn (h) (g) (G) (L1) (T): relation3 genv lenv term ≝
22 | fpn_intro: ∀L2. ⦃G, L1⦄ ⊢ ➡[h, g] L2 → L1 ⋕[T] L2 → fpn h g G L1 T G L2 T
26 "reduction for 'big tree' normal forms (closure)"
27 'BTPRedSn h g G1 L1 T1 G2 L2 T2 = (fpn h g G1 L1 T1 G2 L2 T2).
29 (* Basic_properties *********************************************************)
31 lemma fpn_refl: ∀h,g. tri_reflexive … (fpn h g).
32 /2 width=1 by fpn_intro/ qed.
34 (* Basic inversion lemmas ***************************************************)
36 lemma fpn_inv_gen: ∀h,g,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊢ ⋕➡[h, g] ⦃G2, L2, T2⦄ →
37 ∧∧ G1 = G2 & ⦃G1, L1⦄ ⊢ ➡[h, g] L2 & L1 ⋕[T1] L2 & T1 = T2.
38 #h #g #G1 #G2 #L1 #L2 #T1 #T2 * -G2 -L2 -T2 /2 width=1 by and4_intro/