]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/etc/fpr/fpr_cpr.etc
- extended multiple substitutions now uses bounds in ynat (ie. they
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / etc / fpr / fpr_cpr.etc
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/reducibility/cfpr_cpr.ma".
16
17 (* CONTEXT-FREE PARALLEL REDUCTION ON CLOSURES ******************************)
18
19 (* Properties on context-sensitive parallel reduction for terms *************)
20
21 lemma ltpr_tpr_fpr: ∀L1,L2. L1 ➡ L2 → ∀T1,T2. T1 ➡ T2 → ⦃L1, T1⦄ ➡ ⦃L2, T2⦄.
22 /3 width=4/ qed.
23
24 lemma cpr_fpr: ∀L,T1,T2. L ⊢ T1 ➡ T2 → ⦃L, T1⦄ ➡ ⦃L, T2⦄.
25 /2 width=4/ qed.
26
27 lemma fpr_lift: ∀K1,K2,T1,T2. ⦃K1, T1⦄ ➡ ⦃K2, T2⦄ →
28                 ∀d,e,L1. ⇩[d, e] L1 ≡ K1 →
29                 ∀U1,U2. ⇧[d, e] T1 ≡ U1 → ⇧[d, e] T2 ≡ U2 →
30                 ∃∃L2. ⦃L1, U1⦄ ➡ ⦃L2, U2⦄ & ⇩[d, e] L2 ≡ K2.
31 #K1 #K2 #T1 #T2 #HT12 #d #e #L1 #HLK1 #U1 #U2 #HTU1 #HTU2
32 elim (fpr_inv_all … HT12) -HT12 #K #HK1 #HT12 #HK2
33 elim (ldrop_ltpr_trans … HLK1 … HK1) -K1 #L #HL1 #HLK
34 lapply (cpr_lift … HLK … HTU1 … HTU2 HT12) -T1 -T2 #HU12
35 elim (le_or_ge (|K|) d) #Hd
36 [ elim (ldrop_ltpss_sn_trans_ge … HLK … HK2 …)
37 | elim (ldrop_ltpss_sn_trans_be … HLK … HK2 …)
38 ] // -Hd #L2 #HL2 #HLK2
39 lapply (ltpss_sn_weak_full … HL2) -K /3 width=4/
40 qed-.
41
42 (* Advanced properties ******************************************************)
43
44 lemma fpr_flat_dx: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ➡ ⦃L2, T2⦄ → ∀V1,V2. V1 ➡ V2 →
45                    ∀I. ⦃L1, ⓕ{I}V1.T1⦄ ➡ ⦃L2, ⓕ{I}V2.T2⦄.
46 #L1 #L2 #T1 #T2 #HT12
47 elim (fpr_inv_all … HT12) -HT12 /4 width=4/
48 qed.
49
50 lemma fpr_bind_sn: ∀L1,L2,V1,V2. ⦃L1, V1⦄ ➡ ⦃L2, V2⦄ → ∀T1,T2. T1 ➡ T2 →
51                    ∀a,I. ⦃L1, ⓑ{a,I}V1.T1⦄ ➡ ⦃L2, ⓑ{a,I}V2.T2⦄.
52 #L1 #L2 #V1 #V2 #H #T1 #T2 #HT12 #a #I
53 elim (fpr_inv_all … H) /3 width=4/
54 qed.
55
56 lemma fpr_bind2_minus: ∀I,L1,L2,V1,T1,U2. ⦃L1, -ⓑ{I}V1.T1⦄ ➡ ⦃L2, U2⦄ →
57                        ∃∃V2,T2. ⦃L1.ⓑ{I}V1, T1⦄ ➡ ⦃L2.ⓑ{I}V2, T2⦄ &
58                                 U2 = -ⓑ{I}V2.T2.
59 #I1 #L1 #L2 #V1 #T1 #U2 #H
60 elim (fpr_inv_all … H) -H #L #HL1 #H #HL2
61 elim (cpr_fwd_bind1_minus … H false) -H /4 width=4/
62 qed-.
63
64 (* Advanced forward lemmas **************************************************)
65
66 lemma fpr_fwd_bind2_minus: ∀I,L1,L,V1,T1,T. ⦃L1, -ⓑ{I}V1.T1⦄ ➡ ⦃L, T⦄ → ∀b.
67                            ∃∃V2,T2. ⦃L1, ⓑ{b,I}V1.T1⦄ ➡ ⦃L, ⓑ{b,I}V2.T2⦄ &
68                                     T = -ⓑ{I}V2.T2.
69 #I #L1 #L #V1 #T1 #T #H1 #b
70 elim (fpr_inv_all … H1) -H1 #L0 #HL10 #HT1 #HL0
71 elim (cpr_fwd_bind1_minus … HT1 b) -HT1 /3 width=4/
72 qed-.
73
74 lemma fpr_fwd_shift_bind_minus: ∀I1,I2,L1,L2,V1,V2,T1,T2.
75                                 ⦃L1, -ⓑ{I1}V1.T1⦄ ➡ ⦃L2, -ⓑ{I2}V2.T2⦄ →
76                                 ⦃L1, V1⦄ ➡ ⦃L2, V2⦄ ∧ I1 = I2.
77 * #I2 #L1 #L2 #V1 #V2 #T1 #T2 #H
78 elim (fpr_inv_all … H) -H #L #HL1 #H #HL2
79 [ elim (cpr_inv_abbr1 … H) -H *
80   [ #V #V0 #T #HV1 #HV0 #_ #H destruct /4 width=4/
81   | #T #_ #_ #H destruct
82   ]
83 | elim (cpr_inv_abst1 … H Abst V2) -H
84   #V #T #HV1 #_ #H destruct /3 width=4/
85 ]
86 qed-.
87
88 lemma fpr_fwd_abst2: ∀a,L1,L2,V1,T1,U2. ⦃L1, ⓛ{a}V1.T1⦄ ➡ ⦃L2, U2⦄ → ∀b,I,W.
89                      ∃∃V2,T2. ⦃L1, ⓑ{b,I}W.T1⦄ ➡ ⦃L2, ⓑ{b,I}W.T2⦄ &
90                               U2 = ⓛ{a}V2.T2.
91 #a #L1 #L2 #V1 #T1 #U2 #H
92 elim (fpr_inv_all … H) #L #HL1 #H #HL2 #b #I #W
93 elim (cpr_fwd_abst1 … H b I W) -H /3 width=4/
94 qed-.
95
96 (* Advanced inversion lemmas ************************************************)
97
98 lemma fpr_inv_pair1: ∀I,K1,L2,V1,T1,T2. ⦃K1.ⓑ{I}V1, T1⦄ ➡ ⦃L2, T2⦄ →
99                      ∃∃K2,V2. ⦃K1, V1⦄  ➡ ⦃K2, V2⦄ &
100                               ⦃K1, -ⓑ{I}V1.T1⦄ ➡ ⦃K2, -ⓑ{I}V2.T2⦄ &
101                               L2 = K2.ⓑ{I}V2.
102 #I1 #K1 #X #V1 #T1 #T2 #H
103 elim (fpr_fwd_pair1 … H) -H #I2 #K2 #V2 #HT12 #H destruct
104 elim (fpr_fwd_shift_bind_minus … HT12) #HV12 #H destruct /2 width=5/
105 qed-.
106
107 lemma fpr_inv_pair3: ∀I,L1,K2,V2,T1,T2. ⦃L1, T1⦄ ➡ ⦃K2.ⓑ{I}V2, T2⦄ →
108                      ∃∃K1,V1. ⦃K1, V1⦄  ➡ ⦃K2, V2⦄ &
109                               ⦃K1, -ⓑ{I}V1.T1⦄ ➡ ⦃K2, -ⓑ{I}V2.T2⦄ &
110                               L1 = K1.ⓑ{I}V1.
111 #I2 #X #K2 #V2 #T1 #T2 #H
112 elim (fpr_fwd_pair3 … H) -H #I1 #K1 #V1 #HT12 #H destruct
113 elim (fpr_fwd_shift_bind_minus … HT12) #HV12 #H destruct /2 width=5/
114 qed-.
115
116 (* More advanced forward lemmas *********************************************)
117
118 lemma fpr_fwd_pair1_full: ∀I,K1,L2,V1,T1,T2. ⦃K1.ⓑ{I}V1, T1⦄ ➡ ⦃L2, T2⦄ →
119                           ∀b. ∃∃K2,V2. ⦃K1, V1⦄  ➡ ⦃K2, V2⦄ &
120                                        ⦃K1, ⓑ{b,I}V1.T1⦄ ➡ ⦃K2, ⓑ{b,I}V2.T2⦄ &
121                                        L2 = K2.ⓑ{I}V2.
122 #I #K1 #L2 #V1 #T1 #T2 #H #b
123 elim (fpr_inv_pair1 … H) -H #K2 #V2 #HV12 #HT12 #H destruct
124 elim (fpr_fwd_bind2_minus … HT12 b) -HT12 #W1 #U1 #HTU1 #H destruct /2 width=5/
125 qed-.