1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2/substitution/ldrop.ma".
17 (* SUPCLOSURE ***************************************************************)
19 (* Basic inversion lemmas ***************************************************)
21 fact fsup_inv_atom1_aux: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⊃ ⦃L2, T2⦄ → ∀J. T1 = ⓪{J} →
22 (∃∃I,K,V. L1 = K.ⓑ{I}V & J = LRef 0 & L2 = K & T2 = V) ∨
23 ∃∃I,K,V,i. ⦃K, #i⦄ ⊃ ⦃L2, T2⦄ & L1 = K.ⓑ{I}V & J = LRef (i+1).
24 #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2
25 [ #I #L #V #J #H destruct /3 width=6/
26 | #I #L #K #V #T #i #HLK #J #H destruct /3 width=7/
27 | #a #I #L #V #T #J #H destruct
28 | #a #I #L #V #T #J #H destruct
29 | #I #L #V #T #J #H destruct
30 | #I #L #V #T #J #H destruct
34 lemma fsup_inv_atom1: ∀J,L1,L2,T2. ⦃L1, ⓪{J}⦄ ⊃ ⦃L2, T2⦄ →
35 (∃∃I,K,V. L1 = K.ⓑ{I}V & J = LRef 0 & L2 = K & T2 = V) ∨
36 ∃∃I,K,V,i. ⦃K, #i⦄ ⊃ ⦃L2, T2⦄ & L1 = K.ⓑ{I}V & J = LRef (i+1).
37 /2 width=3 by fsup_inv_atom1_aux/ qed-.
39 fact fsup_inv_bind1_aux: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⊃ ⦃L2, T2⦄ →
40 ∀b,J,W,U. T1 = ⓑ{b,J}W.U →
42 (L2 = L1.ⓑ{J}W ∧ T2 = U).
43 #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2
44 [ #I #L #V #b #J #W #U #H destruct
45 | #I #L #K #V #T #i #_ #b #J #W #U #H destruct
46 | #a #I #L #V #T #b #J #W #U #H destruct /3 width=1/
47 | #a #I #L #V #T #b #J #W #U #H destruct /3 width=1/
48 | #I #L #V #T #b #J #W #U #H destruct
49 | #I #L #V #T #b #J #W #U #H destruct
53 lemma fsup_inv_bind1: ∀b,J,L1,L2,W,U,T2. ⦃L1, ⓑ{b,J}W.U⦄ ⊃ ⦃L2, T2⦄ →
55 (L2 = L1.ⓑ{J}W ∧ T2 = U).
56 /2 width=4 by fsup_inv_bind1_aux/ qed-.
58 fact fsup_inv_flat1_aux: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⊃ ⦃L2, T2⦄ →
59 ∀J,W,U. T1 = ⓕ{J}W.U →
60 L2 = L1 ∧ (T2 = W ∨ T2 = U).
61 #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2
62 [ #I #L #K #J #W #U #H destruct
63 | #I #L #K #V #T #i #_ #J #W #U #H destruct
64 | #a #I #L #V #T #J #W #U #H destruct
65 | #a #I #L #V #T #J #W #U #H destruct
66 | #I #L #V #T #J #W #U #H destruct /3 width=1/
67 | #I #L #V #T #J #W #U #H destruct /3 width=1/
71 lemma fsup_inv_flat1: ∀J,L1,L2,W,U,T2. ⦃L1, ⓕ{J}W.U⦄ ⊃ ⦃L2, T2⦄ →
72 L2 = L1 ∧ (T2 = W ∨ T2 = U).
73 /2 width=4 by fsup_inv_flat1_aux/ qed-.