1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2/grammar/lenv_length.ma".
17 (* SN POINTWISE EXTENSION OF A CONTEXT-SENSITIVE REALTION FOR TERMS *********)
19 inductive lpx_sn (R:relation4 bind2 lenv term term): relation lenv ≝
20 | lpx_sn_atom: lpx_sn R (⋆) (⋆)
21 | lpx_sn_pair: ∀I,K1,K2,V1,V2.
22 lpx_sn R K1 K2 → R I K1 V1 V2 →
23 lpx_sn R (K1.ⓑ{I}V1) (K2.ⓑ{I}V2)
26 (* Basic properties *********************************************************)
28 lemma lpx_sn_refl: ∀R. (∀I,L. reflexive ? (R I L)) → reflexive … (lpx_sn R).
29 #R #HR #L elim L -L /2 width=1 by lpx_sn_atom, lpx_sn_pair/
32 (* Basic inversion lemmas ***************************************************)
34 fact lpx_sn_inv_atom1_aux: ∀R,L1,L2. lpx_sn R L1 L2 → L1 = ⋆ → L2 = ⋆.
37 | #I #K1 #K2 #V1 #V2 #_ #_ #H destruct
41 lemma lpx_sn_inv_atom1: ∀R,L2. lpx_sn R (⋆) L2 → L2 = ⋆.
42 /2 width=4 by lpx_sn_inv_atom1_aux/ qed-.
44 fact lpx_sn_inv_pair1_aux: ∀R,L1,L2. lpx_sn R L1 L2 → ∀I,K1,V1. L1 = K1.ⓑ{I}V1 →
45 ∃∃K2,V2. lpx_sn R K1 K2 & R I K1 V1 V2 & L2 = K2.ⓑ{I}V2.
47 [ #J #K1 #V1 #H destruct
48 | #I #K1 #K2 #V1 #V2 #HK12 #HV12 #J #L #W #H destruct /2 width=5 by ex3_2_intro/
52 lemma lpx_sn_inv_pair1: ∀R,I,K1,V1,L2. lpx_sn R (K1.ⓑ{I}V1) L2 →
53 ∃∃K2,V2. lpx_sn R K1 K2 & R I K1 V1 V2 & L2 = K2.ⓑ{I}V2.
54 /2 width=3 by lpx_sn_inv_pair1_aux/ qed-.
56 fact lpx_sn_inv_atom2_aux: ∀R,L1,L2. lpx_sn R L1 L2 → L2 = ⋆ → L1 = ⋆.
59 | #I #K1 #K2 #V1 #V2 #_ #_ #H destruct
63 lemma lpx_sn_inv_atom2: ∀R,L1. lpx_sn R L1 (⋆) → L1 = ⋆.
64 /2 width=4 by lpx_sn_inv_atom2_aux/ qed-.
66 fact lpx_sn_inv_pair2_aux: ∀R,L1,L2. lpx_sn R L1 L2 → ∀I,K2,V2. L2 = K2.ⓑ{I}V2 →
67 ∃∃K1,V1. lpx_sn R K1 K2 & R I K1 V1 V2 & L1 = K1.ⓑ{I}V1.
69 [ #J #K2 #V2 #H destruct
70 | #I #K1 #K2 #V1 #V2 #HK12 #HV12 #J #K #W #H destruct /2 width=5 by ex3_2_intro/
74 lemma lpx_sn_inv_pair2: ∀R,I,L1,K2,V2. lpx_sn R L1 (K2.ⓑ{I}V2) →
75 ∃∃K1,V1. lpx_sn R K1 K2 & R I K1 V1 V2 & L1 = K1.ⓑ{I}V1.
76 /2 width=3 by lpx_sn_inv_pair2_aux/ qed-.
78 lemma lpx_sn_inv_pair: ∀R,I1,I2,L1,L2,V1,V2.
79 lpx_sn R (L1.ⓑ{I1}V1) (L2.ⓑ{I2}V2) →
80 ∧∧ lpx_sn R L1 L2 & R I1 L1 V1 V2 & I1 = I2.
81 #R #I1 #I2 #L1 #L2 #V1 #V2 #H elim (lpx_sn_inv_pair1 … H) -H
82 #L0 #V0 #HL10 #HV10 #H destruct /2 width=1 by and3_intro/
85 (* Basic forward lemmas *****************************************************)
87 lemma lpx_sn_fwd_length: ∀R,L1,L2. lpx_sn R L1 L2 → |L1| = |L2|.
88 #R #L1 #L2 #H elim H -L1 -L2 normalize //