]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/etc/lpx_sn/lpx_sn.etc
components: arity, csuba
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / etc / lpx_sn / lpx_sn.etc
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/grammar/lenv_length.ma".
16
17 (* SN POINTWISE EXTENSION OF A CONTEXT-SENSITIVE REALTION FOR TERMS *********)
18
19 inductive lpx_sn (R:relation4 bind2 lenv term term): relation lenv ≝
20 | lpx_sn_atom: lpx_sn R (⋆) (⋆)
21 | lpx_sn_pair: ∀I,K1,K2,V1,V2.
22                lpx_sn R K1 K2 → R I K1 V1 V2 →
23                lpx_sn R (K1.ⓑ{I}V1) (K2.ⓑ{I}V2)
24 .
25
26 (* Basic properties *********************************************************)
27
28 lemma lpx_sn_refl: ∀R. (∀I,L. reflexive ? (R I L)) → reflexive … (lpx_sn R).
29 #R #HR #L elim L -L /2 width=1 by lpx_sn_atom, lpx_sn_pair/
30 qed-.
31
32 (* Basic inversion lemmas ***************************************************)
33
34 fact lpx_sn_inv_atom1_aux: ∀R,L1,L2. lpx_sn R L1 L2 → L1 = ⋆ → L2 = ⋆.
35 #R #L1 #L2 * -L1 -L2
36 [ //
37 | #I #K1 #K2 #V1 #V2 #_ #_ #H destruct
38 ]
39 qed-.
40
41 lemma lpx_sn_inv_atom1: ∀R,L2. lpx_sn R (⋆) L2 → L2 = ⋆.
42 /2 width=4 by lpx_sn_inv_atom1_aux/ qed-.
43
44 fact lpx_sn_inv_pair1_aux: ∀R,L1,L2. lpx_sn R L1 L2 → ∀I,K1,V1. L1 = K1.ⓑ{I}V1 →
45                            ∃∃K2,V2. lpx_sn R K1 K2 & R I K1 V1 V2 & L2 = K2.ⓑ{I}V2.
46 #R #L1 #L2 * -L1 -L2
47 [ #J #K1 #V1 #H destruct
48 | #I #K1 #K2 #V1 #V2 #HK12 #HV12 #J #L #W #H destruct /2 width=5 by ex3_2_intro/
49 ]
50 qed-.
51
52 lemma lpx_sn_inv_pair1: ∀R,I,K1,V1,L2. lpx_sn R (K1.ⓑ{I}V1) L2 →
53                         ∃∃K2,V2. lpx_sn R K1 K2 & R I K1 V1 V2 & L2 = K2.ⓑ{I}V2.
54 /2 width=3 by lpx_sn_inv_pair1_aux/ qed-.
55
56 fact lpx_sn_inv_atom2_aux: ∀R,L1,L2. lpx_sn R L1 L2 → L2 = ⋆ → L1 = ⋆.
57 #R #L1 #L2 * -L1 -L2
58 [ //
59 | #I #K1 #K2 #V1 #V2 #_ #_ #H destruct
60 ]
61 qed-.
62
63 lemma lpx_sn_inv_atom2: ∀R,L1. lpx_sn R L1 (⋆) → L1 = ⋆.
64 /2 width=4 by lpx_sn_inv_atom2_aux/ qed-.
65
66 fact lpx_sn_inv_pair2_aux: ∀R,L1,L2. lpx_sn R L1 L2 → ∀I,K2,V2. L2 = K2.ⓑ{I}V2 →
67                            ∃∃K1,V1. lpx_sn R K1 K2 & R I K1 V1 V2 & L1 = K1.ⓑ{I}V1.
68 #R #L1 #L2 * -L1 -L2
69 [ #J #K2 #V2 #H destruct
70 | #I #K1 #K2 #V1 #V2 #HK12 #HV12 #J #K #W #H destruct /2 width=5 by ex3_2_intro/
71 ]
72 qed-.
73
74 lemma lpx_sn_inv_pair2: ∀R,I,L1,K2,V2. lpx_sn R L1 (K2.ⓑ{I}V2) →
75                         ∃∃K1,V1. lpx_sn R K1 K2 & R I K1 V1 V2 & L1 = K1.ⓑ{I}V1.
76 /2 width=3 by lpx_sn_inv_pair2_aux/ qed-.
77
78 lemma lpx_sn_inv_pair: ∀R,I1,I2,L1,L2,V1,V2.
79                        lpx_sn R (L1.ⓑ{I1}V1) (L2.ⓑ{I2}V2) →
80                        ∧∧ lpx_sn R L1 L2 & R I1 L1 V1 V2 & I1 = I2.
81 #R #I1 #I2 #L1 #L2 #V1 #V2 #H elim (lpx_sn_inv_pair1 … H) -H
82 #L0 #V0 #HL10 #HV10 #H destruct /2 width=1 by and3_intro/
83 qed-.
84
85 (* Basic forward lemmas *****************************************************)
86
87 lemma lpx_sn_fwd_length: ∀R,L1,L2. lpx_sn R L1 L2 → |L1| = |L2|.
88 #R #L1 #L2 #H elim H -L1 -L2 normalize //
89 qed-.