1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 notation "hvbox( L1 ⓝ ⊑ break term 46 L2 )"
16 non associative with precedence 45
17 for @{ 'LRSubEqT $L1 $L2 }.
19 include "basic_2/relocation/ldrop.ma".
21 (* LOCAL ENVIRONMENT REFINEMENT FOR SUBSTITUTION ****************************)
23 inductive lsubr: relation lenv ≝
24 | lsubr_sort: ∀L. lsubr L (⋆)
25 | lsubr_abbr: ∀L1,L2,V. lsubr L1 L2 → lsubr (L1. ⓓV) (L2.ⓓV)
26 | lsubr_abst: ∀I,L1,L2,V1,V2. lsubr L1 L2 → lsubr (L1. ⓑ{I}V1) (L2. ⓛV2)
30 "local environment refinement (substitution)"
31 'CrSubEq L1 L2 = (lsubr L1 L2).
33 (* Basic properties *********************************************************)
35 lemma lsubr_bind: ∀I,L1,L2,V. L1 ⊑ L2 → L1. ⓑ{I} V ⊑ L2.ⓑ{I} V.
38 lemma lsubr_abbr: ∀I,L1,L2,V. L1 ⊑ L2 → L1. ⓓV ⊑ L2. ⓑ{I}V.
41 lemma lsubr_refl: ∀L. L ⊑ L.
42 #L elim L -L // /2 width=1/
45 (* Basic inversion lemmas ***************************************************)
47 fact lsubr_inv_atom1_aux: ∀L1,L2. L1 ⊑ L2 → L1 = ⋆ → L2 = ⋆.
49 [ #L1 #L2 #V #_ #H destruct
50 | #I #L1 #L2 #V1 #V2 #_ #H destruct
54 lemma lsubr_inv_atom1: ∀L2. ⋆ ⊑ L2 → L2 = ⋆.
55 /2 width=3 by lsubr_inv_atom1_aux/ qed-.
57 fact lsubr_inv_abbr2_aux: ∀L1,L2. L1 ⊑ L2 → ∀K2,W. L2 = K2.ⓓW →
58 ∃∃K1. K1 ⊑ K2 & L1 = K1.ⓓW.
60 [ #L #K2 #W #H destruct
61 | #L1 #L2 #V #HL12 #K2 #W #H destruct /2 width=3/
62 | #I #L1 #L2 #V1 #V2 #_ #K2 #W #H destruct
66 lemma lsubr_inv_abbr2: ∀L1,K2,W. L1 ⊑ K2.ⓓW →
67 ∃∃K1. K1 ⊑ K2 & L1 = K1.ⓓW.
68 /2 width=3 by lsubr_inv_abbr2_aux/ qed-.
70 fact lsubr_inv_abst2_aux: ∀L1,L2. L1 ⊑ L2 → ∀K2,W2. L2 = K2.ⓛW2 →
71 ∃∃I,K1,W1. K1 ⊑ K2 & L1 = K1.ⓑ{I}W1.
73 [ #L #K2 #W2 #H destruct
74 | #L1 #L2 #V #_ #K2 #W2 #H destruct
75 | #I #L1 #L2 #V1 #V2 #HL12 #K2 #W2 #H destruct /2 width=5/
79 lemma lsubr_inv_abst2: ∀L1,K2,W2. L1 ⊑ K2.ⓛW2 →
80 ∃∃I,K1,W1. K1 ⊑ K2 & L1 = K1.ⓑ{I}W1.
81 /2 width=4 by lsubr_inv_abst2_aux/ qed-.
83 (* Basic forward lemmas *****************************************************)
85 lemma lsubr_fwd_length: ∀L1,L2. L1 ⊑ L2 → |L2| ≤ |L1|.
86 #L1 #L2 #H elim H -L1 -L2 // /2 width=1/
89 lemma lsubr_fwd_ldrop2_abbr: ∀L1,L2. L1 ⊑ L2 →
90 ∀K2,W,i. ⇩[0, i] L2 ≡ K2. ⓓW →
91 ∃∃K1. K1 ⊑ K2 & ⇩[0, i] L1 ≡ K1. ⓓW.
92 #L1 #L2 #H elim H -L1 -L2
94 elim (ldrop_inv_atom1 … H) -H #H destruct
95 | #L1 #L2 #V #HL12 #IHL12 #K2 #W #i #H
96 elim (ldrop_inv_O1_pair1 … H) -H * #Hi #HLK2 destruct [ -IHL12 | -HL12 ]
98 | elim (IHL12 … HLK2) -IHL12 -HLK2 /3 width=3/
100 | #I #L1 #L2 #V1 #V2 #_ #IHL12 #K2 #W #i #H
101 elim (ldrop_inv_O1_pair1 … H) -H * #Hi #HLK2 destruct
102 elim (IHL12 … HLK2) -IHL12 -HLK2 /3 width=3/